[HTML payload içeriği buraya]
26.3 C
Jakarta
Tuesday, November 26, 2024

Upconversion electroluminescence in 2D semiconductors built-in with plasmonic tunnel junctions


  • Lambe, J. & McCarthy, S. L. Mild emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Du, W., Wang, T., Chu, H.-S. & Nijhuis, C. A. Extremely environment friendly on-chip direct digital–plasmonic transducers. Nat. Photon. 11, 623–627 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Qian, H. et al. Environment friendly gentle technology from enhanced inelastic electron tunnelling. Nat. Photon. 12, 485–488 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nat. Nanotechnol. 10, 1058–1063 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flaxer, E., Sneh, O. & Cheshnovsky, O. Molecular gentle emission induced by inelastic electron tunneling. Science 262, 2012–2014 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, S., Nazin, G. & Ho, W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77, 205430 (2008).

    Article 

    Google Scholar
     

  • Schuler, B. et al. Electrically pushed photon emission from particular person atomic defects in monolayer WS2. Sci. Adv. 6, eabb5988 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, T. et al. Molecular orbital gates for plasmon excitation. Nano Lett. 13, 2846–2850 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doppagne, B. et al. Vibronic spectroscopy with submolecular decision from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Doppagne, B. et al. Electrofluorochromism on the single-molecule stage. Science 361, 251–255 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merino, P. et al. Bimodal exciton–plasmon gentle sources managed by native cost provider injection. Sci. Adv. 4, eaap8349 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merino, P., Große, C., Rosławska, A., Kuhnke, Okay. & Kern, Okay. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown–Twiss scanning tunnelling microscopy. Nat. Commun. 6, 8461 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhnke, Okay., Große, C., Merino, P. & Kern, Okay. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117, 5174–5222 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutzler, R., Garg, M., Ast, C. R., Kuhnke, Okay. & Kern, Okay. Mild–matter interplay at atomic scales. Nat. Rev. Phys. 3, 441–453 (2021).

    Article 

    Google Scholar
     

  • Dong, Z. C. et al. Technology of molecular sizzling electroluminescence by resonant nanocavity plasmons. Nat. Photon. 4, 50–54 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Spin-triplet-mediated up-conversion and crossover habits in single-molecule electroluminescence. Phys. Rev. Lett. 122, 177401 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, P.-J. et al. Quantum coherent multielectron processes in an atomic scale contact. Phys. Rev. Lett. 119, 066803 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, N. L., Schull, G. & Berndt, R. Optical probe of quantum shot-noise discount at a single-atom contact. Phys. Rev. Lett. 105, 026601 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kalathingal, V., Dawson, P. & Mitra, J. Scanning tunnelling microscope gentle emission: finite temperature present noise and over cut-off emission. Sci. Rep. 7, 1–10 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Buret, M. et al. Spontaneous hot-electron gentle emission from electron-fed optical antennas. Nano Lett. 15, 5811–5818 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parzefall, M. et al. Mild from van der Waals quantum tunneling gadgets. Nat. Commun. 10, 292 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, J. et al. Mild-emitting plexciton: exploiting plasmon–exciton interplay within the intermediate coupling regime. ACS Nano 12, 10393–10402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Péchou, R. et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photon. 7, 3061–3070 (2020).

    Article 

    Google Scholar
     

  • Qi, P. et al. Large excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity. Mild. Sci. Appl. 11, 176 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Froehlicher, G., Lorchat, E. & Berciaud, S. Cost versus vitality switch in atomically skinny graphene-transition steel dichalcogenide van der Waals heterostructures. Phys. Rev. 8, 011007 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, T. Y. et al. Spectroscopic research of atomic defects and bandgap renormalization in semiconducting monolayer transition steel dichalcogenides. Nat. Commun. 10, 3825 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z., Kalathingal, V., Hoang, T. X., Chu, H.-S. & Nijhuis, C. A. Optical anisotropy in van der Waals supplies: affect on direct excitation of plasmons and photons by quantum tunneling. Mild. Sci. Appl. 10, 230 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations decided by direct emission sample imaging. J. Choose. Soc. Am. B 21, 1210–1215 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Román, R. J. P. et al. Electroluminescence of monolayer WS2 in a scanning tunneling microscope: impact of bias polarity on spectral and angular distribution of emitted gentle. Phys. Rev. B 106, 085419 (2022).

    Article 

    Google Scholar
     

  • Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Verzhbitskiy, I. & Eda, G. Electroluminescent gadgets primarily based on 2D semiconducting transition steel dichalcogenides. Adv. Mater. 30, 1802687 (2018).

    Article 

    Google Scholar
     

  • Dobusch, L., Schuler, S., Perebeinos, V. & Mueller, T. Thermal gentle emission from monolayer MoS2. Adv. Mater. 29, 1701304 (2017).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Probing darkish excitons in atomically skinny semiconductors by way of near-field coupling to floor plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Environment friendly carrier-to-exciton conversion in discipline emission tunnel diodes primarily based on MIS-type van der Waals heterostack. Nano Lett. 17, 5156–5162 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tielrooij, Okay. et al. Electrical management of optical emitter rest pathways enabled by graphene. Nat. Phys. 11, 281–287 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Federspiel, F. et al. Distance dependence of the vitality switch fee from a single semiconductor nanostructure to graphene. Nano Lett. 15, 1252–1258 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koppens, F. H., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for sturdy gentle–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonçalves, P. A. D. et al. Plasmon–emitter interactions on the nanoscale. Nat. Commun. 11, 366 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, L. et al. Photocarrier technology from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Li, Y., Zhao, Y., Zhou, H. & Zhu, H. Extremely environment friendly sizzling electron harvesting from graphene earlier than electron–gap thermalization. Sci. Adv. 5, eaax9958 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swathi, R. & Sebastian, Okay. Lengthy vary resonance vitality switch from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 086101 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaudreau, L. et al. Common distance-scaling of nonradiative vitality switch to graphene. Nano Lett. 13, 2030–2035 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias, E. J. et al. Probing nonlocal results in metals with graphene plasmons. Phys. Rev. B 97, 245405 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Linardy, E., Trushin, M., Watanabe, Okay., Taniguchi, T. & Eda, G. Electro‐optic upconversion in van der Waals heterostructures by way of nonequilibrium photocarrier tunneling. Adv. Mater. 32, 2001543 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brotons-Gisbert, M. et al. Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nat. Commun. 10, 3913 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles