[HTML payload içeriği buraya]
28.9 C
Jakarta
Monday, November 25, 2024

Ultrahigh-quality-factor micro- and nanomechanical resonators utilizing dissipation dilution


  • Huang, Y. L. & Saulson, P. R. Dissipation mechanisms in pendulums and their implications for gravitational wave interferometers. Rev. Sci. Instrum. 69, 544–553 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • González, G. I. & Saulson, P. R. Brownian movement of a mass suspended by an anelastic wire. J. Acoust. Soc. Am. 96, 207–212 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Valette, C. & Cuesta, C. Mécanique de la Corde Vibrante (Hermes Science Publications, 1993).

  • Unterreithmeier, Q. P., Faust, T. & Kotthaus, J. P. Damping of nanomechanical resonators. Phys. Rev. Lett. 105, 027205 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fedorov, S. A. et al. Generalized dissipation dilution in strained mechanical resonators. Phys. Rev. B 99, 054107 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. Prime quality issue resonance at room temperature with nanostrings below excessive tensile stress. J. Appl. Phys. 99, 124304 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature high quality issue over one million. Appl. Phys. Lett. 92, 013112 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, J. D. et al. Sturdy dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ghani, T. et al. A 90nm excessive quantity manufacturing logic expertise that includes novel 45nm gate size strained silicon CMOS transistors. In IEEE Worldwide Electron Units Assembly 2003 11.6.1–11.6.3 (IEEE, 2003); https://doi.org/10.1109/IEDM.2003.1269442

  • Southworth, D. R. et al. Stress and silicon nitride: a crack within the common dissipation of glasses. Phys. Rev. Lett. 102, 225503 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. & Yu, C. C. How stress can cut back dissipation in glasses. Phys. Rev. B 84, 174109 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators by way of comfortable clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghadimi, A. H. et al. Elastic pressure engineering for ultralow mechanical dissipation. Science 360, 764–768 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bereyhi, M. J. et al. Hierarchical tensile constructions with ultralow mechanical dissipation. Nat. Commun. 13, 3097 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, D. et al. Spiderweb nanomechanical resonators by way of Bayesian optimization: Impressed by nature and guided by machine studying. Adv. Mater. 34, 2106248 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bereyhi, M. J. et al. Perimeter modes of nanomechanical resonators exhibit high quality elements exceeding 109 at room temperature. Phys. Rev. X 12, 021036 (2022).

    CAS 

    Google Scholar
     

  • Cupertino, A. et al. Centimeter-scale nanomechanical resonators with low dissipation. Preprint at https://arxiv.org/abs/2308.00611 (2023).

  • Beccari, A. et al. Strained crystalline nanomechanical resonators with high quality elements above 10 billion. Nat. Phys 18, 436–441 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Common transduction scheme for nanomechanical programs based mostly on dielectric forces. Nature 458, 1001–1004 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagci, T. et al. Optical detection of radio waves via a nanomechanical transducer. Nature 507, 81–85 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chien, M.-H., Brameshuber, M., Rossboth, B. Ok., Schütz, G. J. & Schmid, S. Single-molecule optical absorption imaging by nanomechanical photothermal sensing. Proc. Natl Acad. Sci. USA 115, 11150–11155 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Underwood, M. et al. Measurement of the motional sidebands of a nanogram-scale oscillator within the quantum regime. Phys. Rev. A 92, 061801 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Regal, C. A. Sturdy optomechanical squeezing of sunshine. Phys. Rev. X 3, 031012 (2013).

    CAS 

    Google Scholar
     

  • Nielsen, W. H. P., Tsaturyan, Y., Møller, C. B., Polzik, E. S. & Schliesser, A. Multimode optomechanical system within the quantum regime. Proc. Natl Acad. Sci. USA 114, 62–66 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction restrict. Phys. Rev. Lett. 116, 063601 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum management of mechanical movement. Nature 563, 53–58 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saarinen, S. A., Kralj, N., Langman, E. C., Tsaturyan, Y. & Schliesser, A. Laser cooling a membrane-in-the-middle system near the quantum floor state from room temperature. Optica 10, 364–372 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seis, Y. et al. Floor state cooling of an ultracoherent electromechanical system. Nat. Commun. 13, 1507 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Steady power and displacement measurement under the usual quantum restrict. Nat. Phys. 15, 745–749 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jöckel, A. et al. Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic system. Nat. Nanotechnol. 10, 55–59 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Møller, C. B. et al. Quantum back-action-evading measurement of movement in a unfavorable mass reference body. Nature 547, 191–195 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Karg, T. M. et al. Mild-mediated robust coupling between a mechanical oscillator and atomic spins 1 meter aside. Science 369, 174–179 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, R. A. et al. Entanglement between distant macroscopic mechanical and spin programs. Nat. Phys. 17, 228–233 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schmid, G.-L. et al. Coherent suggestions cooling of a nanomechanical membrane with atomic spins. Phys. Rev. X 12, 011020 (2022).

    CAS 

    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and environment friendly conversion between microwave and optical gentle. Nat. Phys. 10, 321–326 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Higginbotham, A. P. et al. Harnessing electro-optic correlations in an environment friendly mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Delaney, R. D. et al. Superconducting-qubit readout by way of low-backaction electro-optic transduction. Nature 606, 489–493 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Košata, J., Zilberberg, O., Degen, C. L., Chitra, R. & Eichler, A. Spin detection by way of parametric frequency conversion in a membrane resonator. Phys. Rev. Appl. 14, 014042 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hälg, D. et al. Membrane-based scanning power microscopy. Phys. Rev. Appl. 15, 021001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, F. et al. Broadband thermomechanically restricted sensing with an optomechanical accelerometer. Optica 8, 350–356 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pratt, J. R. et al. Nanoscale torsional dissipation dilution for quantum experiments and precision measurement. Phys. Rev. X 13, 011018 (2023).

    CAS 

    Google Scholar
     

  • Carney, D. et al. Mechanical quantum sensing within the seek for darkish matter. Quantum Sci. Technol. 6, 024002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Manley, J., Chowdhury, M. D., Grin, D., Singh, S. & Wilson, D. J. Looking for vector darkish matter with an optomechanical accelerometer. Phys. Rev. Lett. 126, 061301 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillespie, D. T. Fluctuation and dissipation in Brownian movement. Am. J. Phys. 61, 1077–1083 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Saulson, P. R. Thermal noise in mechanical experiments. Phys. Rev. D. 42, 2437 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN movies. Phys. Rev. Lett. 103, 207204 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowick, A. S. and Berry, B. S. Anelastic Leisure In Crystalline Solids (Tutorial Press, 1972).

  • Villanueva, L. G. & Schmid, S. Proof of floor loss as ubiquitous limiting damping mechanism in SiN micro-and nanomechanical resonators. Phys. Rev. Lett. 113, 227201 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Høj, D., Hoff, U. B. & Andersen, U. L. Extremely-coherent nanomechanical resonators based mostly on density phononic crystal engineering. Preprint at https://arxiv.org/abs/2207.06703 (2022).

  • Schmid, S., Villanueva, L. G. & Roukes, M. L. (eds) Fundamentals of Nanomechanical Resonators (Springer, 2023).

  • Enns, C. & Hunklinger, S. Low-Temperature Physics (Springer, 2005).

  • Kleiman, R. N., Agnolet, G. & Bishop, D. J. Two-level programs noticed within the mechanical properties of single-crystal silicon at low temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauer, B. D., Kim, P. H., Doolin, C., Souris, F. & Davis, J. P. Two-level system damping in a quasi-one-dimensional optomechanical resonator. Phys. Rev. B 98, 214303 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wollack, E. A. et al. Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature. Appl. Phys. Lett. 118, 123501 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zener, C. Inside friction in solids II. Common concept of thermoelastic inner friction. Phys. Rev. 53, 90–99 (1938).

    Article 
    ADS 

    Google Scholar
     

  • Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical programs. Phys. Rev. B 61, 5600–5609 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kiselev, A. A. & Iafrate, G. J. Phonon dynamics and phonon assisted losses in Euler–Bernoulli nanobeams. Phys. Rev. B 77, 205436 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bao, M., Yang, H., Yin, H. & Solar, Y. Power switch mannequin for squeeze-film air damping in low vacuum. J. Micromech. Microeng. 12, 341–346 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Cross, M. C. & Lifshitz, R. Elastic wave transmission at an abrupt junction in a skinny plate with utility to warmth transport and vibrations in mesoscopic programs. Phys. Rev. B 64, 085324 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Cole, G. D., Wilson-Rae, I., Werbach, Ok., Vanner, M. R. & Aspelmeyer, M. Phonon-tunnelling dissipation in mechanical resonators. Nat. Commun. 2, 231 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wilson-Rae, I. et al. Excessive-Q nanomechanics by way of damaging interference of elastic waves. Phys. Rev. Lett. 106, 047205 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghadimi, A. H., Wilson, D. J. & Kippenberg, T. J. Radiation and inner loss engineering of high-stress silicon nitride nanobeams. Nano Lett. 17, 3501–3505 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jöckel, A. et al. Spectroscopy of mechanical dissipation in micro-mechanical membranes. Appl. Phys. Lett. 99, 143109 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Borrielli, A. et al. Management of recoil losses in nanomechanical SiN membrane resonators. Phys. Rev. B 94, 121403 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Schmid, S., Jensen, Ok. D., Nielsen, Ok. H. & Boisen, A. Damping mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 84, 165307 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Yu, P.-L., Purdy, T. P. & Regal, C. A. Management of fabric damping in high-Q membrane microresonators. Phys. Rev. Lett. 108, 083603 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Landau, L. D., Lifshitz, E. M., Pitaevskii, L. P. & Kosevich, A. M. Concept of Elasticity. Course of Theoretical Physics Vol. 7 (Pergamon, 1986).

  • Catalini, L., Rossi, M., Langman, E. C. & Schliesser, A. Modeling and statement of nonlinear damping in dissipation-diluted nanomechanical resonators. Phys. Rev. Lett. 126, 174101 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachtold, A., Moser, J. & Dykman, M. I. Mesoscopic physics of nanomechanical programs. Rev. Mod. Phys. 94, 045005 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bereyhi, M. J. et al. Clamp-tapering will increase the standard issue of careworn nanobeams. Nano Lett. 19, 2329–2333 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadeghi, P., Tanzer, M., Christensen, S. L. & Schmid, S. Affect of clamp-widening on the standard issue of nanomechanical silicon nitride resonators. J. Appl. Phys. 126, 165108 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Reinhardt, C., Müller, T., Bourassa, A. & Sankey, J. C. Ultralow-noise SiN trampoline resonators for sensing and optomechanics. Phys. Rev. X 6, 021001 (2016).

  • Norte, R. A., Moura, J. P. & Gröblacher, S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys. Rev. Lett. 116, 147202 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, D. J. Cavity Optomechanics with Excessive Stress Silicon Nitride Movies. PhD thesis, California Institute of Expertise (2012); https://doi.org/10.7907/VB3C-1G76

  • Chakram, S., Patil, Y. S., Chang, L. & Vengalattore, M. Dissipation in ultrahigh high quality issue SiN membrane resonators. Phys. Rev. Lett. 112, 127201 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, P.-L. et al. A phononic bandgap defend for high-Q membrane microresonators. Appl. Phys. Lett. 104, 023510 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tsaturyan, Y. et al. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics. Choose. Specific 22, 6810–6821 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Weaver, M. J. et al. Nested trampoline resonators for optomechanics. Appl. Phys. Lett. 108, 033501 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Serra, E. et al. Silicon nitride MOMS oscillator for room temperature quantum optomechanics. J. Microelectromech. Syst. 27, 1193–1203 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Reetz, C. et al. Evaluation of membrane phononic crystals with huge band gaps and low-mass defects. Phys. Rev. Appl. 12, 044027 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fedorov, S. A. et al. Thermal intermodulation noise in cavity-based measurements. Optica 7, 1609–1616 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Guo, J., Norte, R. & Gröblacher, S. Suggestions cooling of a room temperature mechanical oscillator near its motional floor state. Phys. Rev. Lett. 123, 223602 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorov, S. Mechanical Resonators with Excessive Dissipation Dilution in Precision and Quantum Measurements. PhD thesis, EPFL, Lausanne (2021); https://doi.org/10.5075/epfl-thesis-10421

  • Fedorov, S. A., Beccari, A., Engelsen, N. J. & Kippenberg, T. J. Fractal-like mechanical resonators with a soft-clamped basic mode. Phys. Rev. Lett. 124, 025502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Høj, D. et al. Extremely-coherent nanomechanical resonators based mostly on inverse design. Nat. Commun. 12, 5766 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davenport, W. B. & Root, W. L. An Introduction to the Concept of Random Indicators and Noise (Wiley-IEEE, 1987).

  • Zwickl, B. M. et al. Prime quality mechanical and optical properties of economic silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Renninger, W. H., Kharel, P., Behunin, R. O. & Rakich, P. T. Bulk crystalline optomechanics. Nat. Phys. 14, 601–607 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sementilli, L., Romero, E. & Bowen, W. P. Nanomechanical dissipation and pressure engineering. Adv. Funct. Mater. 32, 2105247 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kermany, A. R. et al. Microresonators with Q-factors over one million from extremely careworn epitaxial silicon carbide on silicon. Appl. Phys. Lett. 104, 081901 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Romero, E. et al. Engineering the dissipation of crystalline micromechanical resonators. Phys. Rev. Appl. 13, 044007 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cole, G. D. et al. Tensile-strained InxGa1−xP membranes for cavity optomechanics. Appl. Phys. Lett. 104, 201908 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bückle, M. et al. Stress management of tensile-strained In1−xGaxP nanomechanical string resonators. Appl. Phys. Lett. 113, 201903 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Manjeshwar, S. Ok. et al. Excessive-Q trampoline resonators from strained crystalline InGaP for built-in free-space optomechanics. Nano Lett. 23, 5076–5082 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Excessive-Q optomechanical GaAs nanomembranes. Appl. Phys. Lett. 99, 243102 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Minamisawa, R. A. et al. High-down fabricated silicon nanowires below tensile elastic pressure as much as 4.5%. Nat. Commun. 3, 1096 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang, C. et al. Reaching giant uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. Excessive-strength amorphous silicon carbide for nanomechanics. Adv. Mater. 36, 2306513 (2023).

    Article 

    Google Scholar
     

  • Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with high quality elements exceeding a million. Nat. Commun. 5, 3638 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, M., Cohen, M. A. & Steele, G. A. Silicon nitride membrane resonators at millikelvin temperatures with high quality elements exceeding 108. Appl. Phys. Lett. 107, 263501 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Manjeshwar, S. Ok. et al. Suspended photonic crystal membranes in AlGaAs heterostructures for built-in multi-element optomechanics. Appl. Phys. Lett. 116, 264001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fitzgerald, J. M., Manjeshwar, S. Ok., Wieczorek, W. & Tassin, P. Cavity optomechanics with photonic certain states within the continuum. Phys. Rev. Res. 3, 013131 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Manjeshwar, S. Ok. et al. Built-in microcavity optomechanics with a suspended photonic crystal mirror above a distributed Bragg reflector. Choose. Specific 31, 30212–30226 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Purdy, T. P., Peterson, R. W. & Regal, C. A. Statement of radiation strain shot noise on a macroscopic object. Science 339, 801–804 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kampel, N. S. et al. Enhancing broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).


    Google Scholar
     

  • Brubaker, B. M. et al. Optomechanical ground-state cooling in a steady and environment friendly electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS 

    Google Scholar
     

  • Wilson, D. J. et al. Measurement-based management of a mechanical oscillator at its thermal decoherence charge. Nature 524, 325–329 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhir, V. et al. Look and disappearance of quantum correlations in measurement-based suggestions management of a mechanical oscillator. Phys. Rev. X 7, 011001 (2017).


    Google Scholar
     

  • Guo, J. & Gröblacher, S. Built-in optical-readout of a high-Q mechanical out-of-plane mode. Mild Sci. Appl. 11, 282 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J., Chang, J., Yao, X. & Gröblacher, S. Lively-feedback quantum management of an built-in low-frequency mechanical resonator. Nat. Commun. 14, 4721 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anetsberger, G. et al. Close to-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5, 909–914 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Anetsberger, G. et al. Measuring nanomechanical movement with an imprecision under the usual quantum restrict. Phys. Rev. A 82, 061804 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Galinskiy, I., Tsaturyan, Y., Parniak, M. & Polzik, E. S. Phonon counting thermometry of an ultracoherent membrane resonator close to its motional floor state. Optica 7, 718–725 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shaniv, R., Kumar Keshava, S., Reetz, C. & Regal, C. A. Understanding the standard issue of mass-loaded tensioned resonators. Phys. Rev. Appl. 19, 031006 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kuehn, S., Loring, R. F. & Marohn, J. A. Dielectric fluctuations and the origins of noncontact friction. Phys. Rev. Lett. 96, 156103 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, R. et al. Spin detection with a micromechanical trampoline: in direction of magnetic resonance microscopy harnessing cavity optomechanics. New J. Phys. 21, 043049 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C., Giroux, M., Nour, T. A. & St-Gelais, R. Thermal radiation sensing utilizing excessive mechanical Q-factor silicon nitride membranes. In 2019 IEEE SENSORS 1–4 (IEEE, 2019); https://doi.org/10.1109/SENSORS43011.2019.8956551

  • Piller, M. et al. Thermal IR detection with nanoelectromechanical silicon nitride trampoline resonators. IEEE Sens. J. 23, 1066–1071 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fong, Ok. Y., Pernice, W. H. P. & Tang, H. X. Frequency and section noise of ultrahigh Q silicon nitride nanomechanical resonators. Phys. Rev. B 85, 161410 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gavartin, E., Verlot, P. & Kippenberg, T. J. Stabilization of a linear nanomechanical oscillator to its thermodynamic restrict. Nat. Commun. 4, 2860 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Supplies, design, and traits of bulk acoustic wave resonator: a evaluate. Micromachines 11, 630 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, C., Lee, J. E.-Y. & Zhang, X.-S. Dissipation evaluation strategies and Q-enhancement methods in piezoelectric MEMS laterally vibrating resonators: a evaluate. Sensors 20, 4978 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What’s the Younger’s modulus of silicon?. J. Microelectromech. Syst. 19, 229–238 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Approaching the best elastic pressure restrict in silicon nanowires. Sci. Adv. 2, 1501382 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tao, Y. et al. Everlasting discount of dissipation in nanomechanical Si resonators by chemical floor safety. Nanotechnology 26, 465501 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaß, Y. S., Doster, J., Bückle, M., Braive, R. & Weig, E. M. Figuring out Younger’s modulus by way of the eigenmode spectrum of a nanomechanical string resonator. Appl. Phys. Lett. 121, 083501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Petersen, Ok. E. Silicon as a mechanical materials. Proc. IEEE 70, 420–457 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bückle, M. Nanomechanical Programs Based mostly on Tensile-stressed Crystalline Indium Gallium Phosphide. PhD thesis, Univ. Konstanz (2020).

  • Hjort, Ok., Söderkvist, J. & Schweitz, J.-Å. Gallium arsenide as a mechanical materials. J. Micromech. Microeng. 4, 1–13 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, R. T. & Welsh, F. S. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42, 2219–2230 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gruber, M. et al. Power distribution and fracture analyses of LiNbO3 and LiTaO3 single crystals below biaxial loading. J. Eur. Ceram. Soc. 37, 4397–4406 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Österlund, E., Kinnunen, J., Rontu, V., Torkkeli, A. & Paulasto-Kröckel, M. Mechanical properties and reliability of aluminum nitride skinny movies. J. Alloys Compd 772, 306–313 (2019).

    Article 

    Google Scholar
     

  • Cleland, A. N., Pophristic, M. & Ferguson, I. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett. 79, 2070–2072 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Decreasing intrinsic power dissipation in diamond-on-diamond mechanical resonators towards a million high quality issue. Phys. Rev. Mater. 2, 090601 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Falin, A. et al. Mechanical properties of atomically skinny boron nitride and the function of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic power of monolayer graphene. Science 321, 385–388 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gely, M. F. & Steele, G. A. Superconducting electro-mechanics to check Diósi–Penrose results of basic relativity in huge superpositions. AVS Quantum Sci. 3, 035601 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lubensky, T. C., Kane, C. L., Mao, X., Souslov, A. & Solar, Ok. Phonons and elasticity in critically coordinated lattices. Rep. Prog. Phys. 78, 073901 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • González, G. Suspensions thermal noise within the LIGO gravitational wave detector. Class. Quantum Gravity 17, 4409–4435 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles