Huang, Y. L. & Saulson, P. R. Dissipation mechanisms in pendulums and their implications for gravitational wave interferometers. Rev. Sci. Instrum. 69, 544–553 (1998).
González, G. I. & Saulson, P. R. Brownian movement of a mass suspended by an anelastic wire. J. Acoust. Soc. Am. 96, 207–212 (1994).
Valette, C. & Cuesta, C. Mécanique de la Corde Vibrante (Hermes Science Publications, 1993).
Unterreithmeier, Q. P., Faust, T. & Kotthaus, J. P. Damping of nanomechanical resonators. Phys. Rev. Lett. 105, 027205 (2010).
Fedorov, S. A. et al. Generalized dissipation dilution in strained mechanical resonators. Phys. Rev. B 99, 054107 (2019).
Verbridge, S. S., Parpia, J. M., Reichenbach, R. B., Bellan, L. M. & Craighead, H. G. Prime quality issue resonance at room temperature with nanostrings below excessive tensile stress. J. Appl. Phys. 99, 124304 (2006).
Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature high quality issue over one million. Appl. Phys. Lett. 92, 013112 (2008).
Thompson, J. D. et al. Sturdy dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).
Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987).
Ghani, T. et al. A 90nm excessive quantity manufacturing logic expertise that includes novel 45nm gate size strained silicon CMOS transistors. In IEEE Worldwide Electron Units Assembly 2003 11.6.1–11.6.3 (IEEE, 2003); https://doi.org/10.1109/IEDM.2003.1269442
Southworth, D. R. et al. Stress and silicon nitride: a crack within the common dissipation of glasses. Phys. Rev. Lett. 102, 225503 (2009).
Wu, J. & Yu, C. C. How stress can cut back dissipation in glasses. Phys. Rev. B 84, 174109 (2011).
Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators by way of comfortable clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).
Ghadimi, A. H. et al. Elastic pressure engineering for ultralow mechanical dissipation. Science 360, 764–768 (2018).
Bereyhi, M. J. et al. Hierarchical tensile constructions with ultralow mechanical dissipation. Nat. Commun. 13, 3097 (2022).
Shin, D. et al. Spiderweb nanomechanical resonators by way of Bayesian optimization: Impressed by nature and guided by machine studying. Adv. Mater. 34, 2106248 (2022).
Bereyhi, M. J. et al. Perimeter modes of nanomechanical resonators exhibit high quality elements exceeding 109 at room temperature. Phys. Rev. X 12, 021036 (2022).
Cupertino, A. et al. Centimeter-scale nanomechanical resonators with low dissipation. Preprint at https://arxiv.org/abs/2308.00611 (2023).
Beccari, A. et al. Strained crystalline nanomechanical resonators with high quality elements above 10 billion. Nat. Phys 18, 436–441 (2022).
Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Common transduction scheme for nanomechanical programs based mostly on dielectric forces. Nature 458, 1001–1004 (2009).
Bagci, T. et al. Optical detection of radio waves via a nanomechanical transducer. Nature 507, 81–85 (2014).
Chien, M.-H., Brameshuber, M., Rossboth, B. Ok., Schütz, G. J. & Schmid, S. Single-molecule optical absorption imaging by nanomechanical photothermal sensing. Proc. Natl Acad. Sci. USA 115, 11150–11155 (2018).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Underwood, M. et al. Measurement of the motional sidebands of a nanogram-scale oscillator within the quantum regime. Phys. Rev. A 92, 061801 (2015).
Purdy, T. P., Yu, P.-L., Peterson, R. W., Kampel, N. S. & Regal, C. A. Sturdy optomechanical squeezing of sunshine. Phys. Rev. X 3, 031012 (2013).
Nielsen, W. H. P., Tsaturyan, Y., Møller, C. B., Polzik, E. S. & Schliesser, A. Multimode optomechanical system within the quantum regime. Proc. Natl Acad. Sci. USA 114, 62–66 (2017).
Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction restrict. Phys. Rev. Lett. 116, 063601 (2016).
Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum management of mechanical movement. Nature 563, 53–58 (2018).
Saarinen, S. A., Kralj, N., Langman, E. C., Tsaturyan, Y. & Schliesser, A. Laser cooling a membrane-in-the-middle system near the quantum floor state from room temperature. Optica 10, 364–372 (2023).
Seis, Y. et al. Floor state cooling of an ultracoherent electromechanical system. Nat. Commun. 13, 1507 (2022).
Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Steady power and displacement measurement under the usual quantum restrict. Nat. Phys. 15, 745–749 (2019).
Jöckel, A. et al. Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic system. Nat. Nanotechnol. 10, 55–59 (2015).
Møller, C. B. et al. Quantum back-action-evading measurement of movement in a unfavorable mass reference body. Nature 547, 191–195 (2017).
Karg, T. M. et al. Mild-mediated robust coupling between a mechanical oscillator and atomic spins 1 meter aside. Science 369, 174–179 (2020).
Thomas, R. A. et al. Entanglement between distant macroscopic mechanical and spin programs. Nat. Phys. 17, 228–233 (2021).
Schmid, G.-L. et al. Coherent suggestions cooling of a nanomechanical membrane with atomic spins. Phys. Rev. X 12, 011020 (2022).
Andrews, R. W. et al. Bidirectional and environment friendly conversion between microwave and optical gentle. Nat. Phys. 10, 321–326 (2014).
Higginbotham, A. P. et al. Harnessing electro-optic correlations in an environment friendly mechanical converter. Nat. Phys. 14, 1038–1042 (2018).
Delaney, R. D. et al. Superconducting-qubit readout by way of low-backaction electro-optic transduction. Nature 606, 489–493 (2022).
Košata, J., Zilberberg, O., Degen, C. L., Chitra, R. & Eichler, A. Spin detection by way of parametric frequency conversion in a membrane resonator. Phys. Rev. Appl. 14, 014042 (2020).
Hälg, D. et al. Membrane-based scanning power microscopy. Phys. Rev. Appl. 15, 021001 (2021).
Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).
Zhou, F. et al. Broadband thermomechanically restricted sensing with an optomechanical accelerometer. Optica 8, 350–356 (2021).
Pratt, J. R. et al. Nanoscale torsional dissipation dilution for quantum experiments and precision measurement. Phys. Rev. X 13, 011018 (2023).
Carney, D. et al. Mechanical quantum sensing within the seek for darkish matter. Quantum Sci. Technol. 6, 024002 (2021).
Manley, J., Chowdhury, M. D., Grin, D., Singh, S. & Wilson, D. J. Looking for vector darkish matter with an optomechanical accelerometer. Phys. Rev. Lett. 126, 061301 (2021).
Gillespie, D. T. Fluctuation and dissipation in Brownian movement. Am. J. Phys. 61, 1077–1083 (1993).
Saulson, P. R. Thermal noise in mechanical experiments. Phys. Rev. D. 42, 2437 (1990).
Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN movies. Phys. Rev. Lett. 103, 207204 (2009).
Nowick, A. S. and Berry, B. S. Anelastic Leisure In Crystalline Solids (Tutorial Press, 1972).
Villanueva, L. G. & Schmid, S. Proof of floor loss as ubiquitous limiting damping mechanism in SiN micro-and nanomechanical resonators. Phys. Rev. Lett. 113, 227201 (2014).
Høj, D., Hoff, U. B. & Andersen, U. L. Extremely-coherent nanomechanical resonators based mostly on density phononic crystal engineering. Preprint at https://arxiv.org/abs/2207.06703 (2022).
Schmid, S., Villanueva, L. G. & Roukes, M. L. (eds) Fundamentals of Nanomechanical Resonators (Springer, 2023).
Enns, C. & Hunklinger, S. Low-Temperature Physics (Springer, 2005).
Kleiman, R. N., Agnolet, G. & Bishop, D. J. Two-level programs noticed within the mechanical properties of single-crystal silicon at low temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987).
Hauer, B. D., Kim, P. H., Doolin, C., Souris, F. & Davis, J. P. Two-level system damping in a quasi-one-dimensional optomechanical resonator. Phys. Rev. B 98, 214303 (2018).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).
Wollack, E. A. et al. Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature. Appl. Phys. Lett. 118, 123501 (2021).
Zener, C. Inside friction in solids II. Common concept of thermoelastic inner friction. Phys. Rev. 53, 90–99 (1938).
Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical programs. Phys. Rev. B 61, 5600–5609 (2000).
Kiselev, A. A. & Iafrate, G. J. Phonon dynamics and phonon assisted losses in Euler–Bernoulli nanobeams. Phys. Rev. B 77, 205436 (2008).
Bao, M., Yang, H., Yin, H. & Solar, Y. Power switch mannequin for squeeze-film air damping in low vacuum. J. Micromech. Microeng. 12, 341–346 (2002).
Cross, M. C. & Lifshitz, R. Elastic wave transmission at an abrupt junction in a skinny plate with utility to warmth transport and vibrations in mesoscopic programs. Phys. Rev. B 64, 085324 (2001).
Cole, G. D., Wilson-Rae, I., Werbach, Ok., Vanner, M. R. & Aspelmeyer, M. Phonon-tunnelling dissipation in mechanical resonators. Nat. Commun. 2, 231 (2011).
Wilson-Rae, I. et al. Excessive-Q nanomechanics by way of damaging interference of elastic waves. Phys. Rev. Lett. 106, 047205 (2011).
Ghadimi, A. H., Wilson, D. J. & Kippenberg, T. J. Radiation and inner loss engineering of high-stress silicon nitride nanobeams. Nano Lett. 17, 3501–3505 (2017).
Jöckel, A. et al. Spectroscopy of mechanical dissipation in micro-mechanical membranes. Appl. Phys. Lett. 99, 143109 (2011).
Borrielli, A. et al. Management of recoil losses in nanomechanical SiN membrane resonators. Phys. Rev. B 94, 121403 (2016).
Schmid, S., Jensen, Ok. D., Nielsen, Ok. H. & Boisen, A. Damping mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 84, 165307 (2011).
Yu, P.-L., Purdy, T. P. & Regal, C. A. Management of fabric damping in high-Q membrane microresonators. Phys. Rev. Lett. 108, 083603 (2012).
Landau, L. D., Lifshitz, E. M., Pitaevskii, L. P. & Kosevich, A. M. Concept of Elasticity. Course of Theoretical Physics Vol. 7 (Pergamon, 1986).
Catalini, L., Rossi, M., Langman, E. C. & Schliesser, A. Modeling and statement of nonlinear damping in dissipation-diluted nanomechanical resonators. Phys. Rev. Lett. 126, 174101 (2021).
Bachtold, A., Moser, J. & Dykman, M. I. Mesoscopic physics of nanomechanical programs. Rev. Mod. Phys. 94, 045005 (2022).
Bereyhi, M. J. et al. Clamp-tapering will increase the standard issue of careworn nanobeams. Nano Lett. 19, 2329–2333 (2019).
Sadeghi, P., Tanzer, M., Christensen, S. L. & Schmid, S. Affect of clamp-widening on the standard issue of nanomechanical silicon nitride resonators. J. Appl. Phys. 126, 165108 (2019).
Reinhardt, C., Müller, T., Bourassa, A. & Sankey, J. C. Ultralow-noise SiN trampoline resonators for sensing and optomechanics. Phys. Rev. X 6, 021001 (2016).
Norte, R. A., Moura, J. P. & Gröblacher, S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys. Rev. Lett. 116, 147202 (2016).
Wilson, D. J. Cavity Optomechanics with Excessive Stress Silicon Nitride Movies. PhD thesis, California Institute of Expertise (2012); https://doi.org/10.7907/VB3C-1G76
Chakram, S., Patil, Y. S., Chang, L. & Vengalattore, M. Dissipation in ultrahigh high quality issue SiN membrane resonators. Phys. Rev. Lett. 112, 127201 (2014).
Yu, P.-L. et al. A phononic bandgap defend for high-Q membrane microresonators. Appl. Phys. Lett. 104, 023510 (2014).
Tsaturyan, Y. et al. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics. Choose. Specific 22, 6810–6821 (2014).
Weaver, M. J. et al. Nested trampoline resonators for optomechanics. Appl. Phys. Lett. 108, 033501 (2016).
Serra, E. et al. Silicon nitride MOMS oscillator for room temperature quantum optomechanics. J. Microelectromech. Syst. 27, 1193–1203 (2018).
Reetz, C. et al. Evaluation of membrane phononic crystals with huge band gaps and low-mass defects. Phys. Rev. Appl. 12, 044027 (2019).
Fedorov, S. A. et al. Thermal intermodulation noise in cavity-based measurements. Optica 7, 1609–1616 (2020).
Guo, J., Norte, R. & Gröblacher, S. Suggestions cooling of a room temperature mechanical oscillator near its motional floor state. Phys. Rev. Lett. 123, 223602 (2019).
Fedorov, S. Mechanical Resonators with Excessive Dissipation Dilution in Precision and Quantum Measurements. PhD thesis, EPFL, Lausanne (2021); https://doi.org/10.5075/epfl-thesis-10421
Fedorov, S. A., Beccari, A., Engelsen, N. J. & Kippenberg, T. J. Fractal-like mechanical resonators with a soft-clamped basic mode. Phys. Rev. Lett. 124, 025502 (2020).
Høj, D. et al. Extremely-coherent nanomechanical resonators based mostly on inverse design. Nat. Commun. 12, 5766 (2021).
Davenport, W. B. & Root, W. L. An Introduction to the Concept of Random Indicators and Noise (Wiley-IEEE, 1987).
Zwickl, B. M. et al. Prime quality mechanical and optical properties of economic silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).
Renninger, W. H., Kharel, P., Behunin, R. O. & Rakich, P. T. Bulk crystalline optomechanics. Nat. Phys. 14, 601–607 (2018).
Sementilli, L., Romero, E. & Bowen, W. P. Nanomechanical dissipation and pressure engineering. Adv. Funct. Mater. 32, 2105247 (2022).
Kermany, A. R. et al. Microresonators with Q-factors over one million from extremely careworn epitaxial silicon carbide on silicon. Appl. Phys. Lett. 104, 081901 (2014).
Romero, E. et al. Engineering the dissipation of crystalline micromechanical resonators. Phys. Rev. Appl. 13, 044007 (2020).
Cole, G. D. et al. Tensile-strained InxGa1−xP membranes for cavity optomechanics. Appl. Phys. Lett. 104, 201908 (2014).
Bückle, M. et al. Stress management of tensile-strained In1−xGaxP nanomechanical string resonators. Appl. Phys. Lett. 113, 201903 (2018).
Manjeshwar, S. Ok. et al. Excessive-Q trampoline resonators from strained crystalline InGaP for built-in free-space optomechanics. Nano Lett. 23, 5076–5082 (2023).
Liu, J. et al. Excessive-Q optomechanical GaAs nanomembranes. Appl. Phys. Lett. 99, 243102 (2011).
Minamisawa, R. A. et al. High-down fabricated silicon nanowires below tensile elastic pressure as much as 4.5%. Nat. Commun. 3, 1096 (2012).
Dang, C. et al. Reaching giant uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).
Xu, M. et al. Excessive-strength amorphous silicon carbide for nanomechanics. Adv. Mater. 36, 2306513 (2023).
Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with high quality elements exceeding a million. Nat. Commun. 5, 3638 (2014).
Yuan, M., Cohen, M. A. & Steele, G. A. Silicon nitride membrane resonators at millikelvin temperatures with high quality elements exceeding 108. Appl. Phys. Lett. 107, 263501 (2015).
Manjeshwar, S. Ok. et al. Suspended photonic crystal membranes in AlGaAs heterostructures for built-in multi-element optomechanics. Appl. Phys. Lett. 116, 264001 (2020).
Fitzgerald, J. M., Manjeshwar, S. Ok., Wieczorek, W. & Tassin, P. Cavity optomechanics with photonic certain states within the continuum. Phys. Rev. Res. 3, 013131 (2021).
Manjeshwar, S. Ok. et al. Built-in microcavity optomechanics with a suspended photonic crystal mirror above a distributed Bragg reflector. Choose. Specific 31, 30212–30226 (2023).
Purdy, T. P., Peterson, R. W. & Regal, C. A. Statement of radiation strain shot noise on a macroscopic object. Science 339, 801–804 (2013).
Kampel, N. S. et al. Enhancing broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).
Brubaker, B. M. et al. Optomechanical ground-state cooling in a steady and environment friendly electro-optic transducer. Phys. Rev. X 12, 021062 (2022).
Wilson, D. J. et al. Measurement-based management of a mechanical oscillator at its thermal decoherence charge. Nature 524, 325–329 (2015).
Sudhir, V. et al. Look and disappearance of quantum correlations in measurement-based suggestions management of a mechanical oscillator. Phys. Rev. X 7, 011001 (2017).
Guo, J. & Gröblacher, S. Built-in optical-readout of a high-Q mechanical out-of-plane mode. Mild Sci. Appl. 11, 282 (2022).
Guo, J., Chang, J., Yao, X. & Gröblacher, S. Lively-feedback quantum management of an built-in low-frequency mechanical resonator. Nat. Commun. 14, 4721 (2023).
Anetsberger, G. et al. Close to-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5, 909–914 (2009).
Anetsberger, G. et al. Measuring nanomechanical movement with an imprecision under the usual quantum restrict. Phys. Rev. A 82, 061804 (2010).
Galinskiy, I., Tsaturyan, Y., Parniak, M. & Polzik, E. S. Phonon counting thermometry of an ultracoherent membrane resonator close to its motional floor state. Optica 7, 718–725 (2020).
Shaniv, R., Kumar Keshava, S., Reetz, C. & Regal, C. A. Understanding the standard issue of mass-loaded tensioned resonators. Phys. Rev. Appl. 19, 031006 (2023).
Kuehn, S., Loring, R. F. & Marohn, J. A. Dielectric fluctuations and the origins of noncontact friction. Phys. Rev. Lett. 96, 156103 (2006).
Fischer, R. et al. Spin detection with a micromechanical trampoline: in direction of magnetic resonance microscopy harnessing cavity optomechanics. New J. Phys. 21, 043049 (2019).
Zhang, C., Giroux, M., Nour, T. A. & St-Gelais, R. Thermal radiation sensing utilizing excessive mechanical Q-factor silicon nitride membranes. In 2019 IEEE SENSORS 1–4 (IEEE, 2019); https://doi.org/10.1109/SENSORS43011.2019.8956551
Piller, M. et al. Thermal IR detection with nanoelectromechanical silicon nitride trampoline resonators. IEEE Sens. J. 23, 1066–1071 (2023).
Fong, Ok. Y., Pernice, W. H. P. & Tang, H. X. Frequency and section noise of ultrahigh Q silicon nitride nanomechanical resonators. Phys. Rev. B 85, 161410 (2012).
Gavartin, E., Verlot, P. & Kippenberg, T. J. Stabilization of a linear nanomechanical oscillator to its thermodynamic restrict. Nat. Commun. 4, 2860 (2013).
Liu, Y. et al. Supplies, design, and traits of bulk acoustic wave resonator: a evaluate. Micromachines 11, 630 (2020).
Tu, C., Lee, J. E.-Y. & Zhang, X.-S. Dissipation evaluation strategies and Q-enhancement methods in piezoelectric MEMS laterally vibrating resonators: a evaluate. Sensors 20, 4978 (2020).
Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What’s the Younger’s modulus of silicon?. J. Microelectromech. Syst. 19, 229–238 (2010).
Zhang, H. et al. Approaching the best elastic pressure restrict in silicon nanowires. Sci. Adv. 2, 1501382 (2016).
Tao, Y. et al. Everlasting discount of dissipation in nanomechanical Si resonators by chemical floor safety. Nanotechnology 26, 465501 (2015).
Klaß, Y. S., Doster, J., Bückle, M., Braive, R. & Weig, E. M. Figuring out Younger’s modulus by way of the eigenmode spectrum of a nanomechanical string resonator. Appl. Phys. Lett. 121, 083501 (2022).
Petersen, Ok. E. Silicon as a mechanical materials. Proc. IEEE 70, 420–457 (1982).
Bückle, M. Nanomechanical Programs Based mostly on Tensile-stressed Crystalline Indium Gallium Phosphide. PhD thesis, Univ. Konstanz (2020).
Hjort, Ok., Söderkvist, J. & Schweitz, J.-Å. Gallium arsenide as a mechanical materials. J. Micromech. Microeng. 4, 1–13 (1994).
Smith, R. T. & Welsh, F. S. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42, 2219–2230 (1971).
Gruber, M. et al. Power distribution and fracture analyses of LiNbO3 and LiTaO3 single crystals below biaxial loading. J. Eur. Ceram. Soc. 37, 4397–4406 (2017).
Österlund, E., Kinnunen, J., Rontu, V., Torkkeli, A. & Paulasto-Kröckel, M. Mechanical properties and reliability of aluminum nitride skinny movies. J. Alloys Compd 772, 306–313 (2019).
Cleland, A. N., Pophristic, M. & Ferguson, I. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett. 79, 2070–2072 (2001).
Wu, H. et al. Decreasing intrinsic power dissipation in diamond-on-diamond mechanical resonators towards a million high quality issue. Phys. Rev. Mater. 2, 090601 (2018).
Falin, A. et al. Mechanical properties of atomically skinny boron nitride and the function of interlayer interactions. Nat. Commun. 8, 15815 (2017).
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic power of monolayer graphene. Science 321, 385–388 (2008).
Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).
Gely, M. F. & Steele, G. A. Superconducting electro-mechanics to check Diósi–Penrose results of basic relativity in huge superpositions. AVS Quantum Sci. 3, 035601 (2021).
Lubensky, T. C., Kane, C. L., Mao, X., Souslov, A. & Solar, Ok. Phonons and elasticity in critically coordinated lattices. Rep. Prog. Phys. 78, 073901 (2015).
González, G. Suspensions thermal noise within the LIGO gravitational wave detector. Class. Quantum Gravity 17, 4409–4435 (2000).