Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D’Haese JG, Schloesser H, et al. Advances in most cancers immunotherapy 2019 – newest traits. J Exp Clin Most cancers Res. 2019;38(1):268. https://doi.org/10.1186/s13046-019-1266-0.
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the period of most cancers immunotherapy. Most cancers Commun (Lond). 2021;41(9):803–29. https://doi.org/10.1002/cac2.12178.
Kohler H. Superantibodies: synergy of innate and purchased immunity. Appl Biochem Biotechnol. 2000;83(13):1–9.
Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy. 2016;8(8):889–906. https://doi.org/10.2217/imt-2016-0049.
Weiner GJ. Constructing higher monoclonal antibody-based therapeutics. Nat Rev Most cancers. 2015;15(6):361–70. https://doi.org/10.1038/nrc3930.
Sathyanarayanan V, Neelapu SS. Most cancers immunotherapy: Methods for personalization and combinatorial approaches. Mol Oncol. 2015;9(10):2043–53. https://doi.org/10.1016/j.molonc.2015.10.009.
Kaplon H, Reichert JM. Antibodies to look at in 2019. MAbs. 2019;11(2):219–38. https://doi.org/10.1080/19420862.2018.1556465.
Jensen MC. IMMUNOLOGY. Artificial immunobiology boosts the IQ of T cells. Science. 2015;350(6260):514–5. https://doi.org/10.1126/science.aad5289.
Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, Gao L, Wen Q, Zhong JF, Zhang C, et al. Current advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86. https://doi.org/10.1186/s13045-020-00910-5.
Jiang X, Xu J, Liu M, Xing H, Wang Z, Huang L, Mellor AL, Wang W, Wu S. Adoptive CD8(+) T cell remedy in opposition to most cancers: Challenges and alternatives. Most cancers Lett. 2019;462:23–32. https://doi.org/10.1016/j.canlet.2019.07.017.
Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for most cancers remedy. Nat Rev Clin Oncol. 2022;19(4):237–53. https://doi.org/10.1038/s41571-021-00588-9.
Jinushi M, Tahara H. Cytokine gene-mediated immunotherapy: present standing and future views. Most cancers Sci. 2009;100(8):1389–96. https://doi.org/10.1111/j.1349-7006.2009.01202.x.
Bentebibel SE, Diab A. Cytokines within the Remedy of Melanoma. Curr Oncol Rep. 2021;23(7):83. https://doi.org/10.1007/s11912-021-01064-4.
Morse MA, Gwin WR. Vaccine therapies for most cancers: then and now. Goal Oncol. 2021;16(2):121–52. https://doi.org/10.1007/s11523-020-00788-w.
Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21(6):360–78. https://doi.org/10.1038/s41568-021-00346-0.
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Transferring on from sipuleucel-T: new dendritic cell vaccine methods for prostate most cancers. Entrance Immunol. 2021;12: 641307. https://doi.org/10.3389/fimmu.2021.641307.
Pilavaki P, Gahanbani Ardakani A, Gikas P, Constantinidou A. Osteosarcoma: present ideas and evolutions in administration rules. J Clin Med. 2023. https://doi.org/10.3390/jcm12082785.
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells within the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7. https://doi.org/10.1073/pnas.192461099.
Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, Goswami S, Allison JP. The following decade of immune checkpoint remedy. Most cancers Discov. 2021;11(4):838–57. https://doi.org/10.1158/2159-8290.Cd-20-1680.
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13(1):110. https://doi.org/10.1186/s13045-020-00946-7.
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, et al. Consensus tips for the definition, detection and interpretation of immunogenic cell loss of life. J Immunother Most cancers. 2020. https://doi.org/10.1136/jitc-2019-000337.
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al. Consensus tips for the detection of immunogenic cell loss of life. Oncoimmunology. 2014;3(9): e955691. https://doi.org/10.4161/21624011.2014.955691PubMed-not-MEDLINE.
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell loss of life and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75. https://doi.org/10.1038/nrc3380Medline.
Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, et al. TLR-2 and TLR-9 are sensors of apoptosis in a mouse mannequin of doxorubicin-induced acute irritation. Cell Loss of life Differ. 2011;18(8):1316–25. https://doi.org/10.1038/cdd.2011.4Medline.
Krysko DV, D’Herde Ok, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological penalties. Apoptosis. 2006;11(10):1709–26. https://doi.org/10.1007/s10495-006-9527-8Medline.
Fu L, Zhou X, He C. Polymeric nanosystems for immunogenic cell death-based most cancers immunotherapy. Macromol Biosci. 2021;21(7): e2100075. https://doi.org/10.1002/mabi.202100075.
Matzinger P. Tolerance, hazard, and the prolonged household. Annu Rev Immunol. 1994;12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015Medline.
Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Publicity of phosphatidylserine on the floor of apoptotic lymphocytes triggers particular recognition and elimination by macrophages. J Immunol. 1992;148(7):2207–16.
Kucerova P, Cervinkova M. Spontaneous regression of tumour and the position of microbial an infection–prospects for most cancers remedy. Anticancer Medication. 2016;27(4):269–77. https://doi.org/10.1097/cad.0000000000000337.
Qi J, Jin F, Xu X, Du Y. Mixture most cancers immunotherapy of nanoparticle-based immunogenic cell loss of life inducers and immune checkpoint inhibitors. Int J Nanomedicine. 2021;16:1435–56. https://doi.org/10.2147/ijn.S285999.
Inexperienced DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell loss of life. Nat Rev Immunol. 2009;9(5):353–63. https://doi.org/10.1038/nri2545Medline.
Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al. A novel pathway combining calreticulin publicity and ATP secretion in immunogenic most cancers cell loss of life. Embo j. 2012;31(5):1062–79. https://doi.org/10.1038/emboj.2011.497.
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9. https://doi.org/10.1038/nm1622.
Mishchenko T, Mitroshina E, Balalaeva I, Krysko O, Vedunova M, Krysko DV. An rising position for nanomaterials in growing immunogenicity of most cancers cell loss of life. Biochim Biophys Acta Rev Most cancers. 2019;1871(1):99–108. https://doi.org/10.1016/j.bbcan.2018.11.004.
Li Q, Liu Y, Huang Z, Guo Y, Li Q. Triggering immune system with nanomaterials for most cancers immunotherapy. Entrance Bioeng Biotechnol. 2022;10: 878524. https://doi.org/10.3389/fbioe.2022.878524.
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis on the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Most cancers. 2019;19(7):405–14. https://doi.org/10.1038/s41568-019-0149-1.
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al. Ferroptosis: a regulated cell loss of life nexus linking metabolism, redox biology, and illness. Cell. 2017;171(2):273–85. https://doi.org/10.1016/j.cell.2017.09.021.
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent type of nonapoptotic cell loss of life. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113(34):E4966-4975. https://doi.org/10.1073/pnas.1603244113.
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Tune S, Tavana O, Gu W. ALOX12 is required for p53-mediated tumour suppression by a definite ferroptosis pathway. Nat Cell Biol. 2019;21(5):579–91. https://doi.org/10.1038/s41556-019-0305-6.
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al. ACSL4 dictates ferroptosis sensitivity by shaping mobile lipid composition. Nat Chem Biol. 2017;13(1):91–8. https://doi.org/10.1038/nchembio.2239.
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90. https://doi.org/10.1038/nchembio.2238.
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a sort of autophagy-dependent cell loss of life. Semin Most cancers Biol. 2020;66:89–100. https://doi.org/10.1016/j.semcancer.2019.03.002.
Hou W, Xie Y, Tune X, Solar X, Lotze MT, Zeh HJ. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8. https://doi.org/10.1080/15548627.2016.1187366.
Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid Peroxidation-Dependent Cell Loss of life Regulated by GPx4 and Ferroptosis. Curr Prime Microbiol Immunol. 2017;403:143–70. https://doi.org/10.1007/82_2016_508.
Yang WS, SriRamaratnam R, Welsch ME, Shimada Ok, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al. Regulation of ferroptotic most cancers cell loss of life by GPX4. Cell. 2014;156(1–2):317–31. https://doi.org/10.1016/j.cell.2013.12.010.
Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The position of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85. https://doi.org/10.1016/j.freeradbiomed.2020.02.027.
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday Ok, Roveri A, Peng X, Porto Freitas F, Seibt T, et al. Selenium Utilization by GPX4 Is Required to Stop Hydroperoxide-Induced Ferroptosis. Cell. 2018;172(3):409-422.e421. https://doi.org/10.1016/j.cell.2017.11.048.
Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y, Feron O. Peroxidation of n-3 and n-6 polyunsaturated fatty acids within the acidic tumor surroundings results in ferroptosis-mediated anticancer results. Cell Metab. 2021;33(8):1701-1715.e1705. https://doi.org/10.1016/j.cmet.2021.05.016.
Elliott MR, Ravichandran KS. The Dynamics of Apoptotic Cell Clearance. Dev Cell. 2016;38(2):147–60. https://doi.org/10.1016/j.devcel.2016.06.029.
Wen Q, Liu J, Kang R, Zhou B, Tang D. The discharge and exercise of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510(2):278–83. https://doi.org/10.1016/j.bbrc.2019.01.090.
Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, Zeh HJ, Kang R, Tang D. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic brokers. Mol Cell Oncol. 2015;2(4): e1054549. https://doi.org/10.1080/23723556.2015.1054549.
Liu J, Zhu S, Zeng L, Li J, Klionsky DJ, Kroemer G, Jiang J, Tang D, Kang R. DCN launched from ferroptotic cells ignites AGER-dependent immune responses. Autophagy. 2022;18(9):2036–49. https://doi.org/10.1080/15548627.2021.2008692.
Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, et al. Vaccination with early ferroptotic most cancers cells induces environment friendly antitumor immunity. J Immunother Most cancers. 2020. https://doi.org/10.1136/jitc-2020-001369.
Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M, et al. Ferroptotic cell loss of life and TLR4/Trif signaling provoke neutrophil recruitment after coronary heart transplantation. J Clin Make investments. 2019;129(6):2293–304. https://doi.org/10.1172/jci126428.
Lang X, Inexperienced MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis through synergistic repression of SLC7A11. Most cancers Discov. 2019;9(12):1673–85. https://doi.org/10.1158/2159-8290.Cd-19-0338.
Wang W, Inexperienced M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Promote A, et al. CD8(+) T cells regulate tumour ferroptosis throughout most cancers immunotherapy. Nature. 2019;569(7755):270–4. https://doi.org/10.1038/s41586-019-1170-y.
Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al. Fatty acid transport protein 2 reprograms neutrophils in most cancers. Nature. 2019;569(7754):73–8. https://doi.org/10.1038/s41586-019-1118-2.
Kirtonia A, Sethi G, Garg M. The multifaceted position of reactive oxygen species in tumorigenesis. Cell Mol Life Sci. 2020;77(22):4459–83. https://doi.org/10.1007/s00018-020-03536-5.
Weinberg SE, Sena LA, Chandel NS. Mitochondria within the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–17. https://doi.org/10.1016/j.immuni.2015.02.002.
Guerin A, London G, Marchais S, Metivier F, Pelisse JM. Acute deafness and desferrioxamine. Lancet. 1985;2(8445):39–40. https://doi.org/10.1016/s0140-6736(85)90085-6.
Chávez MD, Tse HM. Focusing on Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Ailments. Entrance Immunol. 2021;12: 703972. https://doi.org/10.3389/fimmu.2021.703972.
Wei J, Zhang M, Zhou J. Myeloid-derived suppressor cells in main despair sufferers suppress T-cell responses by the manufacturing of reactive oxygen species. Psychiatry Res. 2015;228(3):695–701. https://doi.org/10.1016/j.psychres.2015.06.002.
Shen C, Pandey A, Man SM. Gasdermins ship a lethal punch to most cancers. Cell Res. 2020;30(6):463–4. https://doi.org/10.1038/s41422-020-0316-7.
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell loss of life: suggestions of the Nomenclature Committee on Cell Loss of life 2018. Cell Loss of life Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.
Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang Ok, Solar X, Zheng J. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon most cancers cells. Cell Loss of life Dis. 2019;10(3):193. https://doi.org/10.1038/s41419-019-1441-4.
Shi J, Zhao Y, Wang Ok, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell loss of life. Nature. 2015;526(7575):660–5. https://doi.org/10.1038/nature15514.
Kayagaki N, Stowe IB, Lee BL, O’Rourke Ok, Anderson Ok, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71. https://doi.org/10.1038/nature15541.
Agard NJ, Maltby D, Wells JA. Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics. 2010;9(5):880–93. https://doi.org/10.1074/mcp.M900528-MCP200.
Julien O, Wells JA. Caspases and their substrates. Cell Loss of life Differ. 2017;24(8):1380–9. https://doi.org/10.1038/cdd.2017.44.
Crawford ED, Wells JA. Caspase substrates and mobile reworking. Annu Rev Biochem. 2011;80:1055–87. https://doi.org/10.1146/annurev-biochem-061809-121639.
Nyström S, Antoine DJ, Lundbäck P, Lock JG, Nita AF, Högstrand Ok, Grandien A, Erlandsson-Harris H, Andersson U, Applequist SE. TLR activation regulates damage-associated molecular sample isoforms launched throughout pyroptosis. Embo j. 2013;32(1):86–99. https://doi.org/10.1038/emboj.2012.328.
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 throughout apoptosis mediates development to secondary necrotic/pyroptotic cell loss of life. Nat Commun. 2017;8:14128. https://doi.org/10.1038/ncomms14128.
Orning P, Weng D, Starheim Ok, Ratner D, Greatest Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell loss of life. Science. 2018;362(6418):1064–9. https://doi.org/10.1126/science.aau2818.
Ding J, Wang Ok, Liu W, She Y, Solar Q, Shi J, Solar H, Wang DC, Shao F. Pore-forming exercise and structural autoinhibition of the gasdermin household. Nature. 2016;535(7610):111–6. https://doi.org/10.1038/nature18590.
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8. https://doi.org/10.1038/nature18629.
Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F, Liu Z. A bioorthogonal system reveals antitumour immune operate of pyroptosis. Nature. 2020;579(7799):421–6. https://doi.org/10.1038/s41586-020-2079-1.
Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al. Gasdermin E suppresses tumour progress by activating anti-tumour immunity. Nature. 2020;579(7799):415–20. https://doi.org/10.1038/s41586-020-2071-9.
Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, et al. Immunogenic cell loss of life induced by a brand new photodynamic remedy primarily based on photosens and photodithazine. J Immunother Most cancers. 2019;7(1):350. https://doi.org/10.1186/s40425-019-0826-3.
Nixon RA. The position of autophagy in neurodegenerative illness. Nat Med. 2013;19(8):983–97. https://doi.org/10.1038/nm.3232.
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–64. https://doi.org/10.1038/s41580-018-0003-4.
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181(3):497–510. https://doi.org/10.1083/jcb.200712064.
Backer JM. The intricate regulation and sophisticated capabilities of the Class III phosphoinositide 3-kinase Vps34. Biochem J. 2016;473(15):2251–71. https://doi.org/10.1042/bcj20160170.
Ohashi Y, Tremel S, Williams RL. VPS34 complexes from a structural perspective. J Lipid Res. 2019;60(2):229–41. https://doi.org/10.1194/jlr.R089490.
Lahiri V, Hawkins WD, Klionsky DJ. Watch What You (Self-) Eat: autophagic mechanisms that modulate metabolism. Cell Metab. 2019;29(4):803–26. https://doi.org/10.1016/j.cmet.2019.03.003.
Ktistakis NT, Tooze SA. Digesting the increasing mechanisms of autophagy. Tendencies Cell Biol. 2016;26(8):624–35. https://doi.org/10.1016/j.tcb.2016.03.006.
Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci. 2003;116(Pt 9):1679–88. https://doi.org/10.1242/jcs.00381.
Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S. Mechanism and capabilities of membrane binding by the Atg5-Atg12/Atg16 complicated throughout autophagosome formation. Embo j. 2012;31(22):4304–17. https://doi.org/10.1038/emboj.2012.278.
Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36(12):2503–18. https://doi.org/10.1016/j.biocel.2004.05.009.
Lamark T, Kirkin V, Dikic I, Johansen T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle. 2009;8(13):1986–90. https://doi.org/10.4161/cc.8.13.8892.
Shibutani ST, Yoshimori T. A present perspective of autophagosome biogenesis. Cell Res. 2014;24(1):58–68. https://doi.org/10.1038/cr.2013.159.
Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA. Dynamic and transient interactions of Atg9 with autophagosomes, however not membrane integration, are required for autophagy. Mol Biol Cell. 2012;23(10):1860–73. https://doi.org/10.1091/mbc.E11-09-0746.
Wang Y, Li L, Hou C, Lai Y, Lengthy J, Liu J, Zhong Q, Diao J. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol. 2016;60:97–104. https://doi.org/10.1016/j.semcdb.2016.07.009.
Clarke AJ, Simon AK. Autophagy within the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol. 2019;19(3):170–83. https://doi.org/10.1038/s41577-018-0095-2.
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic brokers in mice. Science. 2011;334(6062):1573–7. https://doi.org/10.1126/science.1208347.
Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, irritation, and immunity: a troika governing most cancers and its remedy. Cell. 2016;166(2):288–98. https://doi.org/10.1016/j.cell.2016.05.051.
Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 2010;32(2):227–39. https://doi.org/10.1016/j.immuni.2009.12.006.
Seto S, Tsujimura Ok, Horii T, Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis an infection in dendritic cells. PLoS ONE. 2013;8(12): e86017. https://doi.org/10.1371/journal.pone.0086017.
Hahn T, Akporiaye ET. α-TEA as a stimulator of tumor autophagy and enhancer of antigen cross-presentation. Autophagy. 2013;9(3):429–31. https://doi.org/10.4161/auto.22969.
Iwai Y, Hamanishi J, Chamoto Ok, Honjo T. Most cancers immunotherapies concentrating on the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26. https://doi.org/10.1186/s12929-017-0329-9.
Topalian SL, Drake CG, Pardoll DM. Focusing on the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12. https://doi.org/10.1016/j.coi.2011.12.009.
Wang H, Yao H, Li C, Shi H, Lan J, Li Z, Zhang Y, Liang L, Fang JY, Xu J. HIP1R targets PD-L1 to lysosomal degradation to change T cell-mediated cytotoxicity. Nat Chem Biol. 2019;15(1):42–50. https://doi.org/10.1038/s41589-018-0161-x.
White E, Lattime EC, Guo JY. Autophagy regulates stress responses, metabolism, and anticancer immunity. Tendencies Most cancers. 2021;7(8):778–89. https://doi.org/10.1016/j.trecan.2021.05.003.
Deretic V. Autophagy in irritation, an infection, and immunometabolism. Immunity. 2021;54(3):437–53. https://doi.org/10.1016/j.immuni.2021.01.018.
Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F. Autophagy within the cancer-immunity dialogue. Adv Drug Deliv Rev. 2021;169:40–50. https://doi.org/10.1016/j.addr.2020.12.003.
Lowe MM, Boothby I, Clancy S, Ahn RS, Liao W, Nguyen DN, Schumann Ok, Marson A, Mahuron KM, Kingsbury GA, et al. Regulatory T cells use arginase 2 to boost their metabolic health in tissues. JCI Perception. 2019;4:24. https://doi.org/10.1172/jci.perception.129756.
Liu Y, Zhang H, Wang Z, Wu P, Gong W. 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma sufferers with despair through autophagy/pSTAT3. Eur J Most cancers. 2019;114:8–24. https://doi.org/10.1016/j.ejca.2019.03.017.
Zhan L, Zhang J, Wei B, Cao Y. Selective autophagy of NLRC5 promotes immune evasion of endometrial most cancers. Autophagy. 2022;18(4):942–3. https://doi.org/10.1080/15548627.2022.2037119.
Yamamoto Ok, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, Sohn ASW, Mukhopadhyay S, Lin EY, Parker SJ, et al. Autophagy promotes immune evasion of pancreatic most cancers by degrading MHC-I. Nature. 2020;581(7806):100–5. https://doi.org/10.1038/s41586-020-2229-5.
Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A, et al. Contribution of RIP3 and MLKL to immunogenic cell loss of life signaling in most cancers chemotherapy. Oncoimmunology. 2016;5(6): e1149673. https://doi.org/10.1080/2162402x.2016.1149673.
Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy-related proteins within the immune system. Nat Immunol. 2015;16(10):1014–24. https://doi.org/10.1038/ni.3273.
Li X, He S, Ma B. Autophagy and autophagy-related proteins in most cancers. Mol Most cancers. 2020;19(1):12. https://doi.org/10.1186/s12943-020-1138-4.
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka Ok, Mizushima N. Autophagy-deficient mice develop a number of liver tumors. Genes Dev. 2011;25(8):795–800. https://doi.org/10.1101/gad.2016211.
Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, Von Hoff DD, Maitra A, Kimmelman AC. Autophagy is essential for pancreatic tumor progress and development in tumors with p53 alterations. Most cancers Discov. 2014;4(8):905–13. https://doi.org/10.1158/2159-8290.Cd-14-0362.
Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, et al. p53 standing determines the position of autophagy in pancreatic tumour growth. Nature. 2013;504(7479):296–300. https://doi.org/10.1038/nature12865.
Xie X, Koh JY, Value S, White E, Mehnert JM. Atg7 overcomes senescence and promotes progress of BrafV600E-driven melanoma. Most cancers Discov. 2015;5(4):410–23. https://doi.org/10.1158/2159-8290.Cd-14-1473.
Degenhardt Ok, Mathew R, Beaudoin B, Bray Ok, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al. Autophagy promotes tumor cell survival and restricts necrosis, irritation, and tumorigenesis. Most cancers Cell. 2006;10(1):51–64. https://doi.org/10.1016/j.ccr.2006.06.001.
Murthy A, Li Y, Peng I, Reichelt M, Katakam AK, Noubade R, Roose-Girma M, DeVoss J, Diehl L, Graham RR, et al. A Crohn’s illness variant in Atg16l1 enhances its degradation by caspase 3. Nature. 2014;506(7489):456–62. https://doi.org/10.1038/nature13044.
Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, et al. Lack of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta manufacturing. Nature. 2008;456(7219):264–8. https://doi.org/10.1038/nature07383.
Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablanca EJ, Norman JM, Liu TC, Heath RJ, et al. Atg16L1 T300A variant decreases selective autophagy leading to altered cytokine signaling and decreased antibacterial protection. Proc Natl Acad Sci U S A. 2014;111(21):7741–6. https://doi.org/10.1073/pnas.1407001111.
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras Ok, Simonsen A, Johansen T, Tavernarakis N, et al. Autophagy in wholesome growing old and illness. Nat Getting older. 2021;1(8):634–50. https://doi.org/10.1038/s43587-021-00098-4.
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging through nanotheranostics in combating most cancers. Chem Soc Rev. 2019;48(7):2053–108. https://doi.org/10.1039/c8cs00618k.
Liu S, Pan X, Liu H. Two-dimensional nanomaterials for photothermal remedy. Angew Chem Int Ed Engl. 2020;59(15):5890–900. https://doi.org/10.1002/anie.201911477.
Tsai MF, Chang SH, Cheng FY, Shanmugam V, Cheng YS, Su CH, Yeh CS. Au nanorod design as light-absorber within the first and second organic near-infrared home windows for in vivo photothermal remedy. ACS Nano. 2013;7(6):5330–42. https://doi.org/10.1021/nn401187c.
Du J, Wang X, Dong X, Zhang C, Mei L, Zang Y, Yan L, Zhang H, Gu Z. Enhanced radiosensitization of ternary Cu(3)BiSe(3) nanoparticles by photo-induced hyperthermia within the second near-infrared organic window. Nanoscale. 2019;11(15):7157–65. https://doi.org/10.1039/c8nr09618j.
Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, et al. Rational Design of Molecular Fluorophores for Organic Imaging within the NIR-II Window. Adv Mater. 2017;29:12. https://doi.org/10.1002/adma.201605497.
Yin W, Bao T, Zhang X, Gao Q, Yu J, Dong X, Yan L, Gu Z, Zhao Y. Biodegradable MoO(x) nanoparticles with environment friendly near-infrared photothermal and photodynamic synergetic most cancers remedy on the second organic window. Nanoscale. 2018;10(3):1517–31. https://doi.org/10.1039/c7nr07927c.
Canchi DR, Paschek D, García AE. Equilibrium research of protein denaturation by urea. J Am Chem Soc. 2010;132(7):2338–44. https://doi.org/10.1021/ja909348c.
Lepock JR. Function of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperthermia. 2004;20(2):115–30. https://doi.org/10.1080/02656730310001637334.
Kampinga HH, Brunsting JF, Stege GJ, Burgman PW, Konings AW. Thermal protein denaturation and protein aggregation in cells made thermotolerant by varied chemical substances: position of warmth shock proteins. Exp Cell Res. 1995;219(2):536–46. https://doi.org/10.1006/excr.1995.1262.
Meredith SC. Protein denaturation and aggregation: mobile responses to denatured and aggregated proteins. Ann N Y Acad Sci. 2005;1066:181–221. https://doi.org/10.1196/annals.1363.030.
Tang Y, Yang T, Wang Q, Lv X, Tune X, Ke H, Guo Z, Huang X, Hu J, Li Z, et al. Albumin-coordinated meeting of clearable platinum nanodots for photo-induced most cancers theranostics. Biomaterials. 2018;154:248–60. https://doi.org/10.1016/j.biomaterials.2017.10.030.
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79. https://doi.org/10.1039/c1cs15237h.
Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, et al. Current advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225–331. https://doi.org/10.1021/acs.chemrev.6b00558.
Huang Ok, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metallic carbides and nitrides (MXenes) for biomedical functions. Chem Soc Rev. 2018;47(14):5109–24. https://doi.org/10.1039/c7cs00838d.
Chen YW, Su YL, Hu SH, Chen SY. Functionalized graphene nanocomposites for enhancing photothermal remedy in tumor remedy. Adv Drug Deliv Rev. 2016;105(Pt B):190–204. https://doi.org/10.1016/j.addr.2016.05.022.
Li J, Rao J, Pu Ok. Current progress on semiconducting polymer nanoparticles for molecular imaging and most cancers phototherapy. Biomaterials. 2018;155:217–35. https://doi.org/10.1016/j.biomaterials.2017.11.025.
Banstola A, Poudel Ok, Emami F, Ku SK, Jeong JH, Kim JO, Yook S. Localized remedy utilizing anti-PD-L1 anchored and NIR-responsive hole gold nanoshell (HGNS) loaded with doxorubicin (DOX) for the remedy of regionally superior melanoma. Nanomedicine. 2021;33: 102349. https://doi.org/10.1016/j.nano.2020.102349.
Poudel Ok, Park S, Hwang J, Ku SK, Yong CS, Kim JO, Byeon JH. Photothermally Modulatable and Structurally Disintegratable Sub-8-nm Au(1)Ag(9) embedded nanoblocks for mixture most cancers remedy produced by plug-in meeting. ACS Nano. 2020;14(9):11040–54. https://doi.org/10.1021/acsnano.9b09731.
Wang H, Li X, Tse BW, Yang H, Thorling CA, Liu Y, Touraud M, Chouane JB, Liu X, Roberts MS, et al. Indocyanine green-incorporating nanoparticles for most cancers theranostics. Theranostics. 2018;8(5):1227–42. https://doi.org/10.7150/thno.22872.
Guo F, Yu M, Wang J, Tan F, Li N. Sensible IR780 theranostic nanocarrier for tumor-specific remedy: hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl Mater Interfaces. 2015;7(37):20556–67. https://doi.org/10.1021/acsami.5b06552.
Gao J, Wang WQ, Pei Q, Lord MS, Yu HJ. Engineering nanomedicines by boosting immunogenic cell loss of life for improved most cancers immunotherapy. Acta Pharmacol Sin. 2020;41(7):986–94. https://doi.org/10.1038/s41401-020-0400-z.
Chen Q, Solar T, Jiang C. Current developments in nanomedicine for “chilly” tumor immunotherapy. Nanomicro Lett. 2021;13(1):92. https://doi.org/10.1007/s40820-021-00622-6.
Zhang F, Lu G, Wen X, Li F, Ji X, Li Q, Wu M, Cheng Q, Yu Y, Tang J, et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally managed most cancers photothermal/immunotherapy. J Management Launch. 2020;326:131–9. https://doi.org/10.1016/j.jconrel.2020.06.015.
Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, et al. Magnetic particle imaging-guided heating in vivo utilizing gradient fields for arbitrary localization of magnetic hyperthermia remedy. ACS Nano. 2018;12(4):3699–713. https://doi.org/10.1021/acsnano.8b00893.
Liu Y, Yang Z, Huang X, Yu G, Wang S, Zhou Z, Shen Z, Fan W, Liu Y, Davisson M, et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal remedy. ACS Nano. 2018;12(8):8129–37. https://doi.org/10.1021/acsnano.8b02980.
Jiang X, Zhang S, Ren F, Chen L, Zeng J, Zhu M, Cheng Z, Gao M, Li Z. Ultrasmall Magnetic CuFeSe(2) ternary nanocrystals for multimodal imaging guided photothermal remedy of most cancers. ACS Nano. 2017;11(6):5633–45. https://doi.org/10.1021/acsnano.7b01032.
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494–530. https://doi.org/10.1039/c4nr00708e.
Yavari N, Andersson-Engels S, Segersten U, Malmstrom PU. An summary on preclinical and scientific experiences with photodynamic remedy for bladder most cancers. Can J Urol. 2011;18(4):5778–86.
Inexperienced B, Cobb AR, Hopper C. Photodynamic remedy within the administration of lesions of the pinnacle and neck. Br J Oral Maxillofac Surg. 2013;51(4):283–7. https://doi.org/10.1016/j.bjoms.2012.11.011.
Kostović Ok, Pastar Z, Ceović R, Mokos ZB, Buzina DS, Stanimirović A. Photodynamic remedy in dermatology: present remedies and implications. Coll Antropol. 2012;36(4):1477–81.
Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic remedy: an rising paradigm. Adv Drug Deliv Rev. 2008;60(15):1627–37. https://doi.org/10.1016/j.addr.2008.08.003.
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic remedy: half one-photosensitizers, photochemistry and mobile localization. Photodiagnosis Photodyn Ther. 2004;1(4):279–93. https://doi.org/10.1016/s1572-1000(05)00007-4.
Hong EJ, Choi DG, Shim MS. Focused and efficient photodynamic remedy for most cancers utilizing functionalized nanomaterials. Acta Pharm Sin B. 2016;6(4):297–307. https://doi.org/10.1016/j.apsb.2016.01.007.
Agostinis P, Berg Ok, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al. Photodynamic remedy of most cancers: an replace. CA Most cancers J Clin. 2011;61(4):250–81. https://doi.org/10.3322/caac.20114.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori Ok. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a overview. J Management Launch. 2000;65(1–2):271–84. https://doi.org/10.1016/s0168-3659(99)00248-5.
Chen Z, Liu L, Liang R, Luo Z, He H, Wu Z, Tian H, Zheng M, Ma Y, Cai L. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic remedy for eliciting anti-tumor immunity and abscopal impact. ACS Nano. 2018;12(8):8633–45. https://doi.org/10.1021/acsnano.8b04371.
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, et al. Focusing on photodynamic and photothermal remedy to the endoplasmic reticulum enhances immunogenic most cancers cell loss of life. Nat Commun. 2019;10(1):3349. https://doi.org/10.1038/s41467-019-11269-8.
Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell loss of life in most cancers remedy: current and rising inducers. J Cell Mol Med. 2019;23(8):4854–65. https://doi.org/10.1111/jcmm.14356.
Adkins I, Fucikova J, Garg AD, Agostinis P, Špíšek R. Bodily modalities inducing immunogenic tumor cell loss of life for most cancers immunotherapy. Oncoimmunology. 2014;3(12): e968434. https://doi.org/10.4161/21624011.2014.968434.
Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metallic medication and immunogenic cell loss of life. J Inorg Biochem. 2016;165:71–9. https://doi.org/10.1016/j.jinorgbio.2016.06.021.
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and penalties of necroinflammation. Physiol Rev. 2018;98(2):727–80. https://doi.org/10.1152/physrev.00041.2016.
Wu J, Waxman DJ. Immunogenic chemotherapy: Dose and schedule dependence and mixture with immunotherapy. Most cancers Lett. 2018;419:210–21. https://doi.org/10.1016/j.canlet.2018.01.050.
Bailly C, Thuru X, Quesnel B. Mixed cytotoxic chemotherapy and immunotherapy of most cancers: trendy occasions. NAR Most cancers. 2020;2(1):2. https://doi.org/10.1093/narcan/zcaa002.
Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell loss of life and its relevance for most cancers remedy. Cell Loss of life Dis. 2020;11(11):1013. https://doi.org/10.1038/s41419-020-03221-2.
Wang YJ, Fletcher R, Yu J, Zhang L. Immunogenic results of chemotherapy-induced tumor cell loss of life. Genes Dis. 2018;5(3):194–203. https://doi.org/10.1016/j.gendis.2018.05.003.
Inoue H, Tani Ok. Multimodal immunogenic most cancers cell loss of life as a consequence of anticancer cytotoxic remedies. Cell Loss of life Differ. 2014;21(1):39–49. https://doi.org/10.1038/cdd.2013.84.
Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh Ok, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Present Approaches for Mixture Remedy of Most cancers: The Function of Immunogenic Cell Loss of life. Cancers (Basel). 2020;12:4. https://doi.org/10.3390/cancers12041047.
Ocadlikova D, Lecciso M, Isidori A, Loscocco F, Visani G, Amadori S, Cavo M, Curti A. Chemotherapy-induced tumor cell loss of life on the crossroads between immunogenicity and immunotolerance: give attention to acute myeloid leukemia. Entrance Oncol. 2019;9:1004. https://doi.org/10.3389/fonc.2019.01004.
Banstola A, Pham TT, Jeong JH, Yook S. Polydopamine-tailored paclitaxel-loaded polymeric microspheres with adhered NIR-controllable gold nanoparticles for chemo-phototherapy of pancreatic most cancers. Drug Deliv. 2019;26(1):629–40. https://doi.org/10.1080/10717544.2019.1628118.
Bugaut H, Bruchard M, Berger H, Derangère V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Végran F, Rébé C, et al. Bleomycin exerts ambivalent antitumor immune impact by triggering each immunogenic cell loss of life and proliferation of regulatory T cells. PLoS ONE. 2013;8(6): e65181. https://doi.org/10.1371/journal.pone.0065181.
Asam C, Buerger Ok, Felthaus O, Brébant V, Rachel R, Prantl L, Witzgall R, Haerteis S, Aung T. Subcellular localization of the chemotherapeutic agent doxorubicin in renal epithelial cells and in tumor cells utilizing correlative gentle and electron microscopy. Clin Hemorheol Microcirc. 2019;73(1):157–67. https://doi.org/10.3233/ch-199212.
Poudel Ok, Gautam M, Maharjan S, Jeong JH, Choi HG, Khan GM, Yong CS, Kim JO. Twin stimuli-responsive ursolic acid-embedded nanophytoliposome for focused antitumor remedy. Int J Pharm. 2020;582: 119330. https://doi.org/10.1016/j.ijpharm.2020.119330.
Liu Q, Chen F, Hou L, Shen L, Zhang X, Wang D, Huang L. Nanocarrier-mediated chemo-immunotherapy arrested most cancers development and induced tumor dormancy in desmoplastic melanoma. ACS Nano. 2018;12(8):7812–25. https://doi.org/10.1021/acsnano.8b01890.
Liu B, Hu F, Zhang J, Wang C, Li L. A biomimetic coordination nanoplatform for managed encapsulation and supply of drug-gene mixtures. Angew Chem Int Ed Engl. 2019;58(26):8804–8. https://doi.org/10.1002/anie.201903417.
Li F, Lu J, Kong X, Hyeon T, Ling D. Dynamic nanoparticle assemblies for biomedical functions. Adv Mater. 2017;29:14. https://doi.org/10.1002/adma.201605897.
Wardman P, Candeias LP. Fenton chemistry: an introduction. Radiat Res. 1996;145(5):523–31.
Dong Z, Feng L, Chao Y, Hao Y, Chen M, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced most cancers chemotherapy and radiotherapy. Nano Lett. 2019;19(2):805–15. https://doi.org/10.1021/acs.nanolett.8b03905.
Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. Most cancers remedy by nanoparticle-facilitated fenton response. ACS Nano. 2018;12(12):11819–37. https://doi.org/10.1021/acsnano.8b07635.
Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtar ML, Li Y. A cascade-reaction enabled synergistic most cancers hunger/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomater Sci. 2019;7(9):3683–92. https://doi.org/10.1039/c9bm00641a.
Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang XJ, Tao X, et al. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided most cancers remedy primarily based on pH-Delicate Fe(5)C(2)@Fe(3)O(4) Nanoparticles. ACS Nano. 2019;13(9):10002–14. https://doi.org/10.1021/acsnano.9b01740.
Ma P, Xiao H, Yu C, Liu J, Cheng Z, Tune H, Zhang X, Li C, Wang J, Gu Z, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated technology of extremely poisonous reactive oxygen species. Nano Lett. 2017;17(2):928–37. https://doi.org/10.1021/acs.nanolett.6b04269.
Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, Tang B. Programmed launch of dihydroartemisinin for synergistic most cancers remedy utilizing a CaCO(3) mineralized metal-organic framework. Angew Chem Int Ed Engl. 2019;58(40):14134–9. https://doi.org/10.1002/anie.201907388.
Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang SB, Feng J, Zhang XZ. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis together with imaging-guided photodynamic remedy. ACS Nano. 2018;12(12):12181–92. https://doi.org/10.1021/acsnano.8b05860.
Liu Y, Ji X, Tong WWL, Askhatova D, Yang T, Cheng H, Wang Y, Shi J. Engineering multifunctional RNAi nanomedicine to concurrently goal most cancers hallmarks for combinatorial remedy. Angew Chem Int Ed Engl. 2018;57(6):1510–3. https://doi.org/10.1002/anie.201710144.
Ke W, Li J, Mohammed F, Wang Y, Tou Ok, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, et al. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative most cancers remedy. ACS Nano. 2019;13(2):2357–69. https://doi.org/10.1021/acsnano.8b09082.
Qian X, Zhang J, Gu Z, Chen Y. Nanocatalysts-augmented Fenton chemical response for nanocatalytic tumor remedy. Biomaterials. 2019;211:1–13. https://doi.org/10.1016/j.biomaterials.2019.04.023.
Mishchenko TA, Balalaeva IV, Vedunova MV, Krysko DV. Ferroptosis and photodynamic remedy synergism: enhancing anticancer remedy. Tendencies Most cancers. 2021;7(6):484–7. https://doi.org/10.1016/j.trecan.2021.01.013.
Li Z, Rong L. Cascade reaction-mediated environment friendly ferroptosis synergizes with immunomodulation for high-performance most cancers remedy. Biomater Sci. 2020;8(22):6272–85. https://doi.org/10.1039/d0bm01168aMedline.
Zhang Ok, Ma Z, Li S, Wu Y, Zhang J, Zhang W, Zhao Y, Han H. Disruption of twin homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials. 2022;284: 121502. https://doi.org/10.1016/j.biomaterials.2022.121502Medline.
Bao W, Liu X, Lv Y, Lu GH, Li F, Zhang F, Liu B, Li D, Wei W, Li Y. Nanolongan with a number of on-demand conversions for ferroptosis-apoptosis mixed anticancer remedy. ACS Nano. 2019;13(1):260–73. https://doi.org/10.1021/acsnano.8b05602.
He YJ, Liu XY, Xing L, Wan X, Chang X, Jiang HL. Fenton reaction-independent ferroptosis remedy through glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;241: 119911. https://doi.org/10.1016/j.biomaterials.2020.119911.
Xue CC, Li MH, Zhao Y, Zhou J, Hu Y, Cai KY, Zhao Y, Yu SH, Luo Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO(3) nanoformulation triggers ferroptosis in goal tumor cells. Sci Adv. 2020;6(18):1346. https://doi.org/10.1126/sciadv.aax1346FromNLM.
Torti SV, Torti FM. Iron and most cancers: extra ore to be mined. Nat Rev Most cancers. 2013;13(5):342–55. https://doi.org/10.1038/nrc3495.
Morales M, Xue X. Focusing on iron metabolism in most cancers remedy. Theranostics. 2021;11(17):8412–29. https://doi.org/10.7150/thno.59092.
Chin YC, Yang LX, Hsu FT, Hsu CW, Chang TW, Chen HY, Chen LY, Chia ZC, Hung CH, Su WC, et al. Iron oxide@chlorophyll clustered nanoparticles eradicate bladder most cancers by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J Nanobiotechnol. 2022;20(1):373. https://doi.org/10.1186/s12951-022-01575-7Medline.
Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51(5):575-586.e574. https://doi.org/10.1016/j.devcel.2019.10.007.
Olejarz W, Dominiak A, Żołnierzak A, Kubiak-Tomaszewska G, Lorenc T. Tumor-derived exosomes in immunosuppression and immunotherapy. J Immunol Res. 2020;2020:6272498. https://doi.org/10.1155/2020/6272498.
Xie L, Li J, Wang G, Sang W, Xu M, Li W, Yan J, Li B, Zhang Z, Zhao Q, et al. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97. https://doi.org/10.1021/jacs.1c09753.
Wang Y, Chen Q, Tune H, Zhang Y, Chen H, Liu P, Solar T, Jiang C. A triple therapeutic technique with antiexosomal iron efflux for enhanced ferroptosis remedy and immunotherapy. Small. 2022;18(41): e2201704. https://doi.org/10.1002/smll.202201704.
Gu Z, Liu T, Liu C, Yang Y, Tang J, Tune H, Wang Y, Yang Y, Yu C. Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal actions. Nano Lett. 2021;21(15):6471–9. https://doi.org/10.1021/acs.nanolett.1c01401.
Hsieh CH, Hsieh HC, Shih FS, Wang PW, Yang LX, Shieh DB, Wang YC. An progressive NRF2 nano-modulator induces lung most cancers ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics. 2021;11(14):7072–91. https://doi.org/10.7150/thno.57803.
Jiang Q, Wang Ok, Zhang X, Ouyang B, Liu H, Pang Z, Yang W. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced most cancers immunotherapy. Small. 2020;16(22): e2001704. https://doi.org/10.1002/smll.202001704.
Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, et al. Iron oxide nanoparticles inhibit tumour progress by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94. https://doi.org/10.1038/nnano.2016.168.
Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano. 2018;12(11):11355–65. https://doi.org/10.1021/acsnano.8b06201.
Kroll AV, Fang RH, Zhang L. Biointerfacing and functions of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23–32. https://doi.org/10.1021/acs.bioconjchem.6b00569.
Zhen X, Cheng P, Pu Ok. Current advances in cell membrane-camouflaged nanoparticles for most cancers phototherapy. Small. 2019;15(1): e1804105. https://doi.org/10.1002/smll.201804105.
Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, Xu Z, Cheng SX, Zhang XZ. Switching apoptosis to ferroptosis: metal-organic community for high-efficiency anticancer remedy. Nano Lett. 2017;17(1):284–91. https://doi.org/10.1021/acs.nanolett.6b04060.
Shen Z, Tune J, Yung BC, Zhou Z, Wu A, Chen X. Rising methods of most cancers remedy primarily based on ferroptosis. Adv Mater. 2018;30(12): e1704007. https://doi.org/10.1002/adma.201704007.
Liu G, Gao J, Ai H, Chen X. Functions and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9(9–10):1533–45. https://doi.org/10.1002/smll.201201531.
Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their software in most cancers remedy by a localized fenton response. Angew Chem Int Ed Engl. 2016;55(6):2101–6. https://doi.org/10.1002/anie.201510031.
Harris G, Palosaari T, Magdolenova Z, Mennecozzi M, Gineste JM, Saavedra L, Milcamps A, Huk A, Collins AR, Dusinska M, et al. Iron oxide nanoparticle toxicity testing utilizing high-throughput evaluation and high-content imaging. Nanotoxicology. 2015;9(Suppl 1):87–94. https://doi.org/10.3109/17435390.2013.816797.
Xiong H, Wang C, Wang Z, Lu H, Yao J. Self-assembled nano-activator constructed ferroptosis-immunotherapy by hijacking endogenous iron to intracellular optimistic suggestions loop. J Management Launch. 2021;332:539–52. https://doi.org/10.1016/j.jconrel.2021.03.007.
Zhang M, Qin X, Zhao Z, Du Q, Li Q, Jiang Y, Luan Y. A self-amplifying nanodrug to control the Janus-faced nature of ferroptosis for tumor remedy. Nanoscale Horiz. 2022;7(2):198–210. https://doi.org/10.1039/d1nh00506e.
Han W, Duan X, Ni Ok, Li Y, Chan C, Lin W. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate most cancers immunotherapy. Biomaterials. 2022;280: 121315. https://doi.org/10.1016/j.biomaterials.2021.121315.
Li Q, Su R, Bao X, Cao Ok, Du Y, Wang N, Wang J, Xing F, Yan F, Huang Ok, et al. Glycyrrhetinic acid nanoparticles mixed with ferrotherapy for improved most cancers immunotherapy. Acta Biomater. 2022;144:109–20. https://doi.org/10.1016/j.actbio.2022.03.030.
Tune R, Li T, Ye J, Solar F, Hou B, Saeed M, Gao J, Wang Y, Zhu Q, Xu Z, et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell loss of life for immunotherapy of most cancers. Adv Mater. 2021;33(31): e2101155. https://doi.org/10.1002/adma.202101155.
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-depleting nanomedicines for synergistic most cancers remedy. ACS Nano. 2021;15(5):8039–68. https://doi.org/10.1021/acsnano.1c00498.
Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented most cancers remedy. Chem Soc Rev. 2021;50(10):6013–41. https://doi.org/10.1039/d0cs00718h.
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P, et al. Pyroptosis: a brand new frontier in most cancers. Biomed Pharmacother. 2020;121: 109595. https://doi.org/10.1016/j.biopha.2019.109595.
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, variations, and crosstalk. Cell Loss of life Differ. 2019;26(1):99–114. https://doi.org/10.1038/s41418-018-0212-6.
Van Opdenbosch N, Lamkanfi M. Caspases in cell loss of life, irritation, and illness. Immunity. 2019;50(6):1352–64. https://doi.org/10.1016/j.immuni.2019.05.020.
Karki R, Kanneganti TD. Diverging inflammasome indicators in tumorigenesis and potential concentrating on. Nat Rev Most cancers. 2019;19(4):197–214. https://doi.org/10.1038/s41568-019-0123-y.
Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang Ok, Shao F. Chemotherapy medication induce pyroptosis by caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99–103. https://doi.org/10.1038/nature22393.
Guo W, Li Z, Huang H, Xu Z, Chen Z, Shen G, Li Z, Ren Y, Li G, Hu Y. VB12-Sericin-PBLG-IR780 nanomicelles for programming cell pyroptosis through photothermal (PTT)/Photodynamic (PDT) Impact-Induced Mitochondrial DNA (mitoDNA) Oxidative Harm. ACS Appl Mater Interfaces. 2022;14(15):17008–21. https://doi.org/10.1021/acsami.1c22804.
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell loss of life and irritation. Nat Rev Microbiol. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070.
Wang M, Tune J, Zhou F, Hoover AR, Murray C, Zhou B, Wang L, Qu J, Chen WR. NIR-triggered phototherapy and immunotherapy through an antigen-capturing nanoplatform for metastatic most cancers remedy. Adv Sci (Weinh). 2019;6(10):1802157. https://doi.org/10.1002/advs.201802157.
Xiao Y, Zhang T, Ma X, Yang QC, Yang LL, Yang SC, Liang M, Xu Z, Solar ZJ. Microenvironment-responsive prodrug-induced pyroptosis boosts most cancers immunotherapy. Adv Sci (Weinh). 2021;8(24): e2101840. https://doi.org/10.1002/advs.202101840.
Qiu W, Su W, Xu J, Liang M, Ma X, Xue P, Kang Y, Solar ZJ, Xu Z. Immunomodulatory-photodynamic nanostimulators for invoking pyroptosis to enhance tumor immunotherapy. Adv Healthc Mater. 2022;11(21): e2201233. https://doi.org/10.1002/adhm.202201233.
Lin LS, Tune J, Tune L, Ke Ok, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, et al. Simultaneous Fenton-like ion supply and glutathione depletion by MnO(2) -based nanoagent to boost chemodynamic remedy. Angew Chem Int Ed Engl. 2018;57(18):4902–6. https://doi.org/10.1002/anie.201712027.
Tang Z, Liu Y, He M, Bu W. Chemodynamic remedy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl. 2019;58(4):946–56. https://doi.org/10.1002/anie.201805664.
Zhen W, Liu Y, Wang W, Zhang M, Hu W, Jia X, Wang C, Jiang X. Particular, “Unlocking” of a nanozyme-based butterfly impact to interrupt the evolutionary health of chaotic tumors. Angew Chem Int Ed Engl. 2020;59(24):9491–7. https://doi.org/10.1002/anie.201916142Medline.
Kim J, Cho HR, Jeon H, Kim D, Tune C, Lee N, Choi SH, Hyeon T. Steady O(2)-evolving MnFe(2)O(4) nanoparticle-anchored mesoporous silica nanoparticles for environment friendly photodynamic remedy in hypoxic most cancers. J Am Chem Soc. 2017;139(32):10992–5. https://doi.org/10.1021/jacs.7b05559.
Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst supply. Nat Commun. 2017;8(1):357. https://doi.org/10.1038/s41467-017-00424-8.
Liu Y, Zhen W, Wang Y, Tune S, Zhang H. Na(2)S(2)O(8) nanoparticles set off antitumor immunotherapy by reactive oxygen species storm and surge of tumor osmolarity. J Am Chem Soc. 2020;142(52):21751–7. https://doi.org/10.1021/jacs.0c09482Medline.
Ding B, Sheng J, Zheng P, Li C, Li D, Cheng Z, Ma P, Lin J. Biodegradable upconversion nanoparticles induce pyroptosis for most cancers immunotherapy. Nano Lett. 2021;21(19):8281–9. https://doi.org/10.1021/acs.nanolett.1c02790Medline.
Fan JX, Deng RH, Wang H, Liu XH, Wang XN, Qin R, Jin X, Lei TR, Zheng D, Zhou PH, et al. Epigenetics-based tumor cells pyroptosis for enhancing the immunological impact of chemotherapeutic nanocarriers. Nano Lett. 2019;19(11):8049–58. https://doi.org/10.1021/acs.nanolett.9b03245.
Castano AP, Mroz P, Hamblin MR. Photodynamic remedy and anti-tumour immunity. Nat Rev Most cancers. 2006;6(7):535–45. https://doi.org/10.1038/nrc1894.
Wang C, Wang J, Zhang X, Yu S, Wen D, Hu Q, Ye Y, Bomba H, Hu X, Liu Z, et al. In situ fashioned reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for mixture remedy. Sci Transl Med. 2018;10:429. https://doi.org/10.1126/scitranslmed.aan3682FromNLM.
Zheng P, Ding B, Zhu G, Li C, Lin J. Biodegradable Ca(2+) nanomodulators activate pyroptosis by mitochondrial Ca(2+) overload for most cancers immunotherapy. Angew Chem Int Ed Engl. 2022;61(36): e202204904. https://doi.org/10.1002/anie.202204904Medline.
Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng Ok, Solar RY, Zhou D, Han J, Wu Q. Tom20 senses iron-activated ROS signaling to advertise melanoma cell pyroptosis. Cell Res. 2018;28(12):1171–85. https://doi.org/10.1038/s41422-018-0090-y.
Wang L, Li Ok, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, et al. Metformin induces human esophageal carcinoma cell pyroptosis by concentrating on the miR-497/PELP1 axis. Most cancers Lett. 2019;450:22–31. https://doi.org/10.1016/j.canlet.2019.02.014.
Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, Zeng CY, Mai FY, Hu B, Ouyang DY. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung most cancers cells through caspase-3/GSDME activation. Apoptosis. 2019;24(3–4):312–25. https://doi.org/10.1007/s10495-019-01515-1.
Pathak T, Trebak M. Mitochondrial Ca(2+) signaling. Pharmacol Ther. 2018;192:112–23. https://doi.org/10.1016/j.pharmthera.2018.07.001.
Xu L, Tong G, Tune Q, Zhu C, Zhang H, Shi J, Zhang Z. Enhanced intracellular Ca(2+) nanogenerator for tumor-specific synergistic remedy through disruption of mitochondrial Ca(2+) homeostasis and photothermal remedy. ACS Nano. 2018;12(7):6806–18. https://doi.org/10.1021/acsnano.8b02034.
Zheng P, Ding B, Jiang Z, Xu W, Li G, Ding J, Chen X. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell loss of life. Nano Lett. 2021;21(5):2088–93. https://doi.org/10.1021/acs.nanolett.0c04778.
Dai Z, Tang J, Gu Z, Wang Y, Yang Y, Yang Y, Yu C. Eliciting immunogenic cell loss of life through a unitized nanoinducer. Nano Lett. 2020;20(9):6246–54. https://doi.org/10.1021/acs.nanolett.0c00713.
Cheng H, Jiang XY, Zheng RR, Zuo SJ, Zhao LP, Fan GL, Xie BR, Yu XY, Li SY, Zhang XZ. A biomimetic cascade nanoreactor for tumor focused hunger therapy-amplified chemotherapy. Biomaterials. 2019;195:75–85. https://doi.org/10.1016/j.biomaterials.2019.01.003.
Patel CH, Leone RD, Horton MR, Powell JD. Focusing on metabolism to control immune responses in autoimmunity and most cancers. Nat Rev Drug Discov. 2019;18(9):669–88. https://doi.org/10.1038/s41573-019-0032-5.
Zhang S, Zhang Y, Feng Y, Wu J, Hu Y, Lin L, Xu C, Chen J, Tang Z, Tian H, et al. Biomineralized two-enzyme nanoparticles regulate tumor glycometabolism inducing tumor cell pyroptosis and strong antitumor immunotherapy. Adv Mater. 2022;34(50): e2206851. https://doi.org/10.1002/adma.202206851.
Otto T, Sicinski P. Cell cycle proteins as promising targets in most cancers remedy. Nat Rev Most cancers. 2017;17(2):93–115. https://doi.org/10.1038/nrc.2016.138.
Kandoth C, McLellan MD, Vandin F, Ye Ok, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al. Mutational panorama and significance throughout 12 main most cancers sorts. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634.
Xie Q, Chi S, Fang Y, Solar Y, Meng L, Ding J, Chen Y. PI3Kα inhibitor impairs AKT phosphorylation and synergizes with novel angiogenesis inhibitor AL3810 in human hepatocellular carcinoma. Sign Transduct Goal Ther. 2021;6(1):130. https://doi.org/10.1038/s41392-021-00522-6.
George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, et al. Lack of PTEN is related to resistance to Anti-PD-1 checkpoint blockade remedy in metastatic uterine leiomyosarcoma. Immunity. 2017;46(2):197–204. https://doi.org/10.1016/j.immuni.2017.02.001.
Yang Q, Ma X, Xiao Y, Zhang T, Yang L, Yang S, Liang M, Wang S, Wu Z, Xu Z, et al. Engineering prodrug nanomicelles as pyroptosis inducer for codelivery of PI3K/mTOR and CDK inhibitors to boost antitumor immunity. Acta Pharm Sin B. 2022;12(7):3139–55. https://doi.org/10.1016/j.apsb.2022.02.024.
Lu H, Zhang S, Wu J, Chen M, Cai MC, Fu Y, Li W, Wang J, Zhao X, Yu Z, et al. Molecular focused therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell loss of life. Clin Most cancers Res. 2018;24(23):6066–77. https://doi.org/10.1158/1078-0432.Ccr-18-1478.
Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Discipline CO, Berger AC, Hartsough EJ, Rodeck U, Alnemri ES, et al. Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment through pyroptosis. Most cancers Discov. 2020;10(2):254–69. https://doi.org/10.1158/2159-8290.Cd-19-0672.
Swanton C. Cell-cycle focused therapies. Lancet Oncol. 2004;5(1):27–36. https://doi.org/10.1016/s1470-2045(03)01321-4.
Hanker AB, Kaklamani V, Arteaga CL. Challenges for the scientific growth of PI3K inhibitors: methods to enhance their impression in stable tumors. Most cancers Discov. 2019;9(4):482–91. https://doi.org/10.1158/2159-8290.Cd-18-1175.
Solar T, Zhang G, Wang Q, Chen Q, Chen X, Lu Y, Liu L, Zhang Y, He X, Ruan C, et al. A concentrating on theranostics nanomedicine instead method for hyperthermia perfusion. Biomaterials. 2018;183:268–79. https://doi.org/10.1016/j.biomaterials.2018.04.016.
Liu X, He Y, Li F, Huang Q, Kato TA, Corridor RP, Li CY. Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell. 2015;58(2):284–96. https://doi.org/10.1016/j.molcel.2015.03.003.
Akino Ok, Toyota M, Suzuki H, Imai T, Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, et al. Identification of DFNA5 as a goal of epigenetic inactivation in gastric most cancers. Most cancers Sci. 2007;98(1):88–95. https://doi.org/10.1111/j.1349-7006.2006.00351.x.
Kim MS, Chang X, Yamashita Ok, Nagpal JK, Baek JH, Wu G, Trink B, Ratovitski EA, Mori M, Sidransky D. Aberrant promoter methylation and tumor suppressive exercise of the DFNA5 gene in colorectal carcinoma. Oncogene. 2008;27(25):3624–34. https://doi.org/10.1038/sj.onc.1211021.
Wang X, Li M, Ren Ok, Xia C, Li J, Yu Q, Qiu Y, Lu Z, Lengthy Y, Zhang Z, et al. On-demand autophagy cascade amplification nanoparticles exactly enhanced oxaliplatin-induced most cancers immunotherapy. Adv Mater. 2020;32(32): e2002160. https://doi.org/10.1002/adma.202002160.
Ge YX, Zhang TW, Zhou L, Ding W, Liang HF, Hu ZC, Chen Q, Dong J, Xue FF, Yin XF, et al. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma utilizing an clever autophagy-controlling metallic natural framework. Biomaterials. 2022;282: 121407. https://doi.org/10.1016/j.biomaterials.2022.121407.
Deretic V, Saitoh T, Akira S. Autophagy in an infection, irritation and immunity. Nat Rev Immunol. 2013;13(10):722–37. https://doi.org/10.1038/nri3532.
Li TF, Xu YH, Li Ok, Wang C, Liu X, Yue Y, Chen Z, Yuan SJ, Wen Y, Zhang Q, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity by activation of autophagy. Acta Biomater. 2019;86:381–94. https://doi.org/10.1016/j.actbio.2019.01.020.
Wang Y, Lin YX, Wang J, Qiao SL, Liu YY, Dong WQ, Wang J, An HW, Yang C, Mamuti M, et al. In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator permits efficient most cancers immunotherapy. ACS Nano. 2019;13(7):7568–77. https://doi.org/10.1021/acsnano.9b00143.
Pietrocola F, Bravo-San Pedro JM, Galluzzi L, Kroemer G. Autophagy in pure and therapy-driven anticancer immunosurveillance. Autophagy. 2017;13(12):2163–70. https://doi.org/10.1080/15548627.2017.1310356.
Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and mobile immune responses. Immunity. 2013;39(2):211–27. https://doi.org/10.1016/j.immuni.2013.07.017.
Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, et al. Microenvironmental autophagy promotes tumour progress. Nature. 2017;541(7637):417–20. https://doi.org/10.1038/nature20815.
Galluzzi L, Yamazaki T, Kroemer G. Linking mobile stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018;19(11):731–45. https://doi.org/10.1038/s41580-018-0068-0.
Galluzzi L, Bravo-San Pedro JM, Levine B, Inexperienced DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16(7):487–511. https://doi.org/10.1038/nrd.2017.22.
Zhang L, Jia Y, Yang J, Zhang L, Hou S, Niu X, Zhu J, Huang Y, Solar X, Xu ZP, et al. Environment friendly immunotherapy of drug-free layered double hydroxide nanoparticles through neutralizing extra acid and blocking tumor cell autophagy. ACS Nano. 2022;16(8):12036–48. https://doi.org/10.1021/acsnano.2c02183.
Gatenby RA, Gillies RJ. Why do cancers have excessive cardio glycolysis? Nat Rev Most cancers. 2004;4(11):891–9. https://doi.org/10.1038/nrc1478.
Hao G, Xu ZP, Li L. Manipulating extracellular tumour pH: an efficient goal for most cancers remedy. RSC Adv. 2018;8(39):22182–92. https://doi.org/10.1039/c8ra02095g.
Gacche RN, Meshram RJ. Focusing on tumor micro-environment for design and growth of novel anti-angiogenic brokers arresting tumor progress. Prog Biophys Mol Biol. 2013;113(2):333–54. https://doi.org/10.1016/j.pbiomolbio.2013.10.001.
Chen R, Jäättelä M, Liu B. Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers Basel. 2020. https://doi.org/10.3390/cancers12092437.
Zhang Y, Zhang L, Gao J, Wen L. Professional-death or pro-survival: contrasting paradigms on nanomaterial-induced autophagy and exploitations for most cancers remedy. Acc Chem Res. 2019;52(11):3164–76. https://doi.org/10.1021/acs.accounts.9b00397.
Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, Cho YK, Kandere-Grzybowska Ok, Grzybowski BA. Focused crystallization of mixed-charge nanoparticles in lysosomes induces selective loss of life of most cancers cells. Nat Nanotechnol. 2020;15(4):331–41. https://doi.org/10.1038/s41565-020-0643-3.
Chen M, Yang D, Solar Y, Liu T, Wang W, Fu J, Wang Q, Bai X, Quan G, Pan X, et al. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy through autophagy regulation technique. ACS Nano. 2021;15(2):3387–401. https://doi.org/10.1021/acsnano.0c10396.
Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25(5):1037–43. https://doi.org/10.1016/j.cmet.2017.04.004.
Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Sign Transduct Goal Ther. 2022;7(1):196. https://doi.org/10.1038/s41392-022-01046-3.
Labouta HI, Asgarian N, Rinker Ok, Cramb DT. Meta-analysis of nanoparticle cytotoxicity through data-mining the literature. ACS Nano. 2019;13(2):1583–94. https://doi.org/10.1021/acsnano.8b07562.
Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomedicine (Lond). 2016;11(6):673–92. https://doi.org/10.2217/nnm.16.5.