[HTML payload içeriği buraya]
28.9 C
Jakarta
Monday, November 25, 2024

The appliance of nanoparticles-based ferroptosis, pyroptosis and autophagy in most cancers immunotherapy | Journal of Nanobiotechnology


  • Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D’Haese JG, Schloesser H, et al. Advances in most cancers immunotherapy 2019 – newest traits. J Exp Clin Most cancers Res. 2019;38(1):268. https://doi.org/10.1186/s13046-019-1266-0.

    Article 

    Google Scholar
     

  • Wang Y, Wang M, Wu HX, Xu RH. Advancing to the period of most cancers immunotherapy. Most cancers Commun (Lond). 2021;41(9):803–29. https://doi.org/10.1002/cac2.12178.

    Article 

    Google Scholar
     

  • Kohler H. Superantibodies: synergy of innate and purchased immunity. Appl Biochem Biotechnol. 2000;83(13):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy. 2016;8(8):889–906. https://doi.org/10.2217/imt-2016-0049.

    Article 
    CAS 

    Google Scholar
     

  • Weiner GJ. Constructing higher monoclonal antibody-based therapeutics. Nat Rev Most cancers. 2015;15(6):361–70. https://doi.org/10.1038/nrc3930.

    Article 
    CAS 

    Google Scholar
     

  • Sathyanarayanan V, Neelapu SS. Most cancers immunotherapy: Methods for personalization and combinatorial approaches. Mol Oncol. 2015;9(10):2043–53. https://doi.org/10.1016/j.molonc.2015.10.009.

    Article 
    CAS 

    Google Scholar
     

  • Kaplon H, Reichert JM. Antibodies to look at in 2019. MAbs. 2019;11(2):219–38. https://doi.org/10.1080/19420862.2018.1556465.

    Article 
    CAS 

    Google Scholar
     

  • Jensen MC. IMMUNOLOGY. Artificial immunobiology boosts the IQ of T cells. Science. 2015;350(6260):514–5. https://doi.org/10.1126/science.aad5289.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, Gao L, Wen Q, Zhong JF, Zhang C, et al. Current advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86. https://doi.org/10.1186/s13045-020-00910-5.

    Article 
    CAS 

    Google Scholar
     

  • Jiang X, Xu J, Liu M, Xing H, Wang Z, Huang L, Mellor AL, Wang W, Wu S. Adoptive CD8(+) T cell remedy in opposition to most cancers: Challenges and alternatives. Most cancers Lett. 2019;462:23–32. https://doi.org/10.1016/j.canlet.2019.07.017.

    Article 
    CAS 

    Google Scholar
     

  • Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for most cancers remedy. Nat Rev Clin Oncol. 2022;19(4):237–53. https://doi.org/10.1038/s41571-021-00588-9.

    Article 
    CAS 

    Google Scholar
     

  • Jinushi M, Tahara H. Cytokine gene-mediated immunotherapy: present standing and future views. Most cancers Sci. 2009;100(8):1389–96. https://doi.org/10.1111/j.1349-7006.2009.01202.x.

    Article 
    CAS 

    Google Scholar
     

  • Bentebibel SE, Diab A. Cytokines within the Remedy of Melanoma. Curr Oncol Rep. 2021;23(7):83. https://doi.org/10.1007/s11912-021-01064-4.

    Article 
    CAS 

    Google Scholar
     

  • Morse MA, Gwin WR. Vaccine therapies for most cancers: then and now. Goal Oncol. 2021;16(2):121–52. https://doi.org/10.1007/s11523-020-00788-w.

    Article 

    Google Scholar
     

  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21(6):360–78. https://doi.org/10.1038/s41568-021-00346-0.

    Article 
    CAS 

    Google Scholar
     

  • Sutherland SIM, Ju X, Horvath LG, Clark GJ. Transferring on from sipuleucel-T: new dendritic cell vaccine methods for prostate most cancers. Entrance Immunol. 2021;12: 641307. https://doi.org/10.3389/fimmu.2021.641307.

    Article 
    CAS 

    Google Scholar
     

  • Pilavaki P, Gahanbani Ardakani A, Gikas P, Constantinidou A. Osteosarcoma: present ideas and evolutions in administration rules. J Clin Med. 2023. https://doi.org/10.3390/jcm12082785.

    Article 

    Google Scholar
     

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells within the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7. https://doi.org/10.1073/pnas.192461099.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, Goswami S, Allison JP. The following decade of immune checkpoint remedy. Most cancers Discov. 2021;11(4):838–57. https://doi.org/10.1158/2159-8290.Cd-20-1680.

    Article 
    CAS 

    Google Scholar
     

  • Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13(1):110. https://doi.org/10.1186/s13045-020-00946-7.

    Article 
    CAS 

    Google Scholar
     

  • Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, et al. Consensus tips for the definition, detection and interpretation of immunogenic cell loss of life. J Immunother Most cancers. 2020. https://doi.org/10.1136/jitc-2019-000337.

    Article 

    Google Scholar
     

  • Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al. Consensus tips for the detection of immunogenic cell loss of life. Oncoimmunology. 2014;3(9): e955691. https://doi.org/10.4161/21624011.2014.955691PubMed-not-MEDLINE.

    Article 

    Google Scholar
     

  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell loss of life and DAMPs in most cancers remedy. Nat Rev Most cancers. 2012;12(12):860–75. https://doi.org/10.1038/nrc3380Medline.

    Article 
    CAS 

    Google Scholar
     

  • Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, et al. TLR-2 and TLR-9 are sensors of apoptosis in a mouse mannequin of doxorubicin-induced acute irritation. Cell Loss of life Differ. 2011;18(8):1316–25. https://doi.org/10.1038/cdd.2011.4Medline.

    Article 
    CAS 

    Google Scholar
     

  • Krysko DV, D’Herde Ok, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological penalties. Apoptosis. 2006;11(10):1709–26. https://doi.org/10.1007/s10495-006-9527-8Medline.

    Article 

    Google Scholar
     

  • Fu L, Zhou X, He C. Polymeric nanosystems for immunogenic cell death-based most cancers immunotherapy. Macromol Biosci. 2021;21(7): e2100075. https://doi.org/10.1002/mabi.202100075.

    Article 
    CAS 

    Google Scholar
     

  • Matzinger P. Tolerance, hazard, and the prolonged household. Annu Rev Immunol. 1994;12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015Medline.

    Article 
    CAS 

    Google Scholar
     

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Publicity of phosphatidylserine on the floor of apoptotic lymphocytes triggers particular recognition and elimination by macrophages. J Immunol. 1992;148(7):2207–16.

    Article 
    CAS 

    Google Scholar
     

  • Kucerova P, Cervinkova M. Spontaneous regression of tumour and the position of microbial an infection–prospects for most cancers remedy. Anticancer Medication. 2016;27(4):269–77. https://doi.org/10.1097/cad.0000000000000337.

    Article 
    CAS 

    Google Scholar
     

  • Qi J, Jin F, Xu X, Du Y. Mixture most cancers immunotherapy of nanoparticle-based immunogenic cell loss of life inducers and immune checkpoint inhibitors. Int J Nanomedicine. 2021;16:1435–56. https://doi.org/10.2147/ijn.S285999.

    Article 

    Google Scholar
     

  • Inexperienced DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell loss of life. Nat Rev Immunol. 2009;9(5):353–63. https://doi.org/10.1038/nri2545Medline.

    Article 
    CAS 

    Google Scholar
     

  • Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al. A novel pathway combining calreticulin publicity and ATP secretion in immunogenic most cancers cell loss of life. Embo j. 2012;31(5):1062–79. https://doi.org/10.1038/emboj.2011.497.

    Article 
    CAS 

    Google Scholar
     

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9. https://doi.org/10.1038/nm1622.

    Article 
    CAS 

    Google Scholar
     

  • Mishchenko T, Mitroshina E, Balalaeva I, Krysko O, Vedunova M, Krysko DV. An rising position for nanomaterials in growing immunogenicity of most cancers cell loss of life. Biochim Biophys Acta Rev Most cancers. 2019;1871(1):99–108. https://doi.org/10.1016/j.bbcan.2018.11.004.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Liu Y, Huang Z, Guo Y, Li Q. Triggering immune system with nanomaterials for most cancers immunotherapy. Entrance Bioeng Biotechnol. 2022;10: 878524. https://doi.org/10.3389/fbioe.2022.878524.

    Article 

    Google Scholar
     

  • Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis on the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Most cancers. 2019;19(7):405–14. https://doi.org/10.1038/s41568-019-0149-1.

    Article 
    CAS 

    Google Scholar
     

  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al. Ferroptosis: a regulated cell loss of life nexus linking metabolism, redox biology, and illness. Cell. 2017;171(2):273–85. https://doi.org/10.1016/j.cell.2017.09.021.

    Article 
    CAS 

    Google Scholar
     

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent type of nonapoptotic cell loss of life. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article 
    CAS 

    Google Scholar
     

  • Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113(34):E4966-4975. https://doi.org/10.1073/pnas.1603244113.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Tune S, Tavana O, Gu W. ALOX12 is required for p53-mediated tumour suppression by a definite ferroptosis pathway. Nat Cell Biol. 2019;21(5):579–91. https://doi.org/10.1038/s41556-019-0305-6.

    Article 
    CAS 

    Google Scholar
     

  • Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al. ACSL4 dictates ferroptosis sensitivity by shaping mobile lipid composition. Nat Chem Biol. 2017;13(1):91–8. https://doi.org/10.1038/nchembio.2239.

    Article 
    CAS 

    Google Scholar
     

  • Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90. https://doi.org/10.1038/nchembio.2238.

    Article 
    CAS 

    Google Scholar
     

  • Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a sort of autophagy-dependent cell loss of life. Semin Most cancers Biol. 2020;66:89–100. https://doi.org/10.1016/j.semcancer.2019.03.002.

    Article 
    CAS 

    Google Scholar
     

  • Hou W, Xie Y, Tune X, Solar X, Lotze MT, Zeh HJ. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8. https://doi.org/10.1080/15548627.2016.1187366.

    Article 
    CAS 

    Google Scholar
     

  • Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid Peroxidation-Dependent Cell Loss of life Regulated by GPx4 and Ferroptosis. Curr Prime Microbiol Immunol. 2017;403:143–70. https://doi.org/10.1007/82_2016_508.

    Article 
    CAS 

    Google Scholar
     

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada Ok, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al. Regulation of ferroptotic most cancers cell loss of life by GPX4. Cell. 2014;156(1–2):317–31. https://doi.org/10.1016/j.cell.2013.12.010.

    Article 
    CAS 

    Google Scholar
     

  • Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The position of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85. https://doi.org/10.1016/j.freeradbiomed.2020.02.027.

    Article 
    CAS 

    Google Scholar
     

  • Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday Ok, Roveri A, Peng X, Porto Freitas F, Seibt T, et al. Selenium Utilization by GPX4 Is Required to Stop Hydroperoxide-Induced Ferroptosis. Cell. 2018;172(3):409-422.e421. https://doi.org/10.1016/j.cell.2017.11.048.

    Article 
    CAS 

    Google Scholar
     

  • Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y, Feron O. Peroxidation of n-3 and n-6 polyunsaturated fatty acids within the acidic tumor surroundings results in ferroptosis-mediated anticancer results. Cell Metab. 2021;33(8):1701-1715.e1705. https://doi.org/10.1016/j.cmet.2021.05.016.

    Article 
    CAS 

    Google Scholar
     

  • Elliott MR, Ravichandran KS. The Dynamics of Apoptotic Cell Clearance. Dev Cell. 2016;38(2):147–60. https://doi.org/10.1016/j.devcel.2016.06.029.

    Article 
    CAS 

    Google Scholar
     

  • Wen Q, Liu J, Kang R, Zhou B, Tang D. The discharge and exercise of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510(2):278–83. https://doi.org/10.1016/j.bbrc.2019.01.090.

    Article 
    CAS 

    Google Scholar
     

  • Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, Zeh HJ, Kang R, Tang D. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic brokers. Mol Cell Oncol. 2015;2(4): e1054549. https://doi.org/10.1080/23723556.2015.1054549.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Zhu S, Zeng L, Li J, Klionsky DJ, Kroemer G, Jiang J, Tang D, Kang R. DCN launched from ferroptotic cells ignites AGER-dependent immune responses. Autophagy. 2022;18(9):2036–49. https://doi.org/10.1080/15548627.2021.2008692.

    Article 
    CAS 

    Google Scholar
     

  • Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, et al. Vaccination with early ferroptotic most cancers cells induces environment friendly antitumor immunity. J Immunother Most cancers. 2020. https://doi.org/10.1136/jitc-2020-001369.

    Article 

    Google Scholar
     

  • Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M, et al. Ferroptotic cell loss of life and TLR4/Trif signaling provoke neutrophil recruitment after coronary heart transplantation. J Clin Make investments. 2019;129(6):2293–304. https://doi.org/10.1172/jci126428.

    Article 

    Google Scholar
     

  • Lang X, Inexperienced MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis through synergistic repression of SLC7A11. Most cancers Discov. 2019;9(12):1673–85. https://doi.org/10.1158/2159-8290.Cd-19-0338.

    Article 
    CAS 

    Google Scholar
     

  • Wang W, Inexperienced M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Promote A, et al. CD8(+) T cells regulate tumour ferroptosis throughout most cancers immunotherapy. Nature. 2019;569(7755):270–4. https://doi.org/10.1038/s41586-019-1170-y.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, et al. Fatty acid transport protein 2 reprograms neutrophils in most cancers. Nature. 2019;569(7754):73–8. https://doi.org/10.1038/s41586-019-1118-2.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirtonia A, Sethi G, Garg M. The multifaceted position of reactive oxygen species in tumorigenesis. Cell Mol Life Sci. 2020;77(22):4459–83. https://doi.org/10.1007/s00018-020-03536-5.

    Article 
    CAS 

    Google Scholar
     

  • Weinberg SE, Sena LA, Chandel NS. Mitochondria within the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–17. https://doi.org/10.1016/j.immuni.2015.02.002.

    Article 
    CAS 

    Google Scholar
     

  • Guerin A, London G, Marchais S, Metivier F, Pelisse JM. Acute deafness and desferrioxamine. Lancet. 1985;2(8445):39–40. https://doi.org/10.1016/s0140-6736(85)90085-6.

    Article 
    CAS 

    Google Scholar
     

  • Chávez MD, Tse HM. Focusing on Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Ailments. Entrance Immunol. 2021;12: 703972. https://doi.org/10.3389/fimmu.2021.703972.

    Article 
    CAS 

    Google Scholar
     

  • Wei J, Zhang M, Zhou J. Myeloid-derived suppressor cells in main despair sufferers suppress T-cell responses by the manufacturing of reactive oxygen species. Psychiatry Res. 2015;228(3):695–701. https://doi.org/10.1016/j.psychres.2015.06.002.

    Article 
    CAS 

    Google Scholar
     

  • Shen C, Pandey A, Man SM. Gasdermins ship a lethal punch to most cancers. Cell Res. 2020;30(6):463–4. https://doi.org/10.1038/s41422-020-0316-7.

    Article 

    Google Scholar
     

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell loss of life: suggestions of the Nomenclature Committee on Cell Loss of life 2018. Cell Loss of life Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article 

    Google Scholar
     

  • Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang Ok, Solar X, Zheng J. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon most cancers cells. Cell Loss of life Dis. 2019;10(3):193. https://doi.org/10.1038/s41419-019-1441-4.

    Article 

    Google Scholar
     

  • Shi J, Zhao Y, Wang Ok, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell loss of life. Nature. 2015;526(7575):660–5. https://doi.org/10.1038/nature15514.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kayagaki N, Stowe IB, Lee BL, O’Rourke Ok, Anderson Ok, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71. https://doi.org/10.1038/nature15541.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Agard NJ, Maltby D, Wells JA. Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics. 2010;9(5):880–93. https://doi.org/10.1074/mcp.M900528-MCP200.

    Article 
    CAS 

    Google Scholar
     

  • Julien O, Wells JA. Caspases and their substrates. Cell Loss of life Differ. 2017;24(8):1380–9. https://doi.org/10.1038/cdd.2017.44.

    Article 
    CAS 

    Google Scholar
     

  • Crawford ED, Wells JA. Caspase substrates and mobile reworking. Annu Rev Biochem. 2011;80:1055–87. https://doi.org/10.1146/annurev-biochem-061809-121639.

    Article 
    CAS 

    Google Scholar
     

  • Nyström S, Antoine DJ, Lundbäck P, Lock JG, Nita AF, Högstrand Ok, Grandien A, Erlandsson-Harris H, Andersson U, Applequist SE. TLR activation regulates damage-associated molecular sample isoforms launched throughout pyroptosis. Embo j. 2013;32(1):86–99. https://doi.org/10.1038/emboj.2012.328.

    Article 
    CAS 

    Google Scholar
     

  • Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 throughout apoptosis mediates development to secondary necrotic/pyroptotic cell loss of life. Nat Commun. 2017;8:14128. https://doi.org/10.1038/ncomms14128.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Orning P, Weng D, Starheim Ok, Ratner D, Greatest Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell loss of life. Science. 2018;362(6418):1064–9. https://doi.org/10.1126/science.aau2818.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding J, Wang Ok, Liu W, She Y, Solar Q, Shi J, Solar H, Wang DC, Shao F. Pore-forming exercise and structural autoinhibition of the gasdermin household. Nature. 2016;535(7610):111–6. https://doi.org/10.1038/nature18590.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8. https://doi.org/10.1038/nature18629.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F, Liu Z. A bioorthogonal system reveals antitumour immune operate of pyroptosis. Nature. 2020;579(7799):421–6. https://doi.org/10.1038/s41586-020-2079-1.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al. Gasdermin E suppresses tumour progress by activating anti-tumour immunity. Nature. 2020;579(7799):415–20. https://doi.org/10.1038/s41586-020-2071-9.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, et al. Immunogenic cell loss of life induced by a brand new photodynamic remedy primarily based on photosens and photodithazine. J Immunother Most cancers. 2019;7(1):350. https://doi.org/10.1186/s40425-019-0826-3.

    Article 

    Google Scholar
     

  • Nixon RA. The position of autophagy in neurodegenerative illness. Nat Med. 2013;19(8):983–97. https://doi.org/10.1038/nm.3232.

    Article 
    CAS 

    Google Scholar
     

  • Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–64. https://doi.org/10.1038/s41580-018-0003-4.

    Article 
    CAS 

    Google Scholar
     

  • Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181(3):497–510. https://doi.org/10.1083/jcb.200712064.

    Article 

    Google Scholar
     

  • Backer JM. The intricate regulation and sophisticated capabilities of the Class III phosphoinositide 3-kinase Vps34. Biochem J. 2016;473(15):2251–71. https://doi.org/10.1042/bcj20160170.

    Article 
    CAS 

    Google Scholar
     

  • Ohashi Y, Tremel S, Williams RL. VPS34 complexes from a structural perspective. J Lipid Res. 2019;60(2):229–41. https://doi.org/10.1194/jlr.R089490.

    Article 
    CAS 

    Google Scholar
     

  • Lahiri V, Hawkins WD, Klionsky DJ. Watch What You (Self-) Eat: autophagic mechanisms that modulate metabolism. Cell Metab. 2019;29(4):803–26. https://doi.org/10.1016/j.cmet.2019.03.003.

    Article 
    CAS 

    Google Scholar
     

  • Ktistakis NT, Tooze SA. Digesting the increasing mechanisms of autophagy. Tendencies Cell Biol. 2016;26(8):624–35. https://doi.org/10.1016/j.tcb.2016.03.006.

    Article 
    CAS 

    Google Scholar
     

  • Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci. 2003;116(Pt 9):1679–88. https://doi.org/10.1242/jcs.00381.

    Article 
    CAS 

    Google Scholar
     

  • Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S. Mechanism and capabilities of membrane binding by the Atg5-Atg12/Atg16 complicated throughout autophagosome formation. Embo j. 2012;31(22):4304–17. https://doi.org/10.1038/emboj.2012.278.

    Article 
    CAS 

    Google Scholar
     

  • Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36(12):2503–18. https://doi.org/10.1016/j.biocel.2004.05.009.

    Article 
    CAS 

    Google Scholar
     

  • Lamark T, Kirkin V, Dikic I, Johansen T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle. 2009;8(13):1986–90. https://doi.org/10.4161/cc.8.13.8892.

    Article 
    CAS 

    Google Scholar
     

  • Shibutani ST, Yoshimori T. A present perspective of autophagosome biogenesis. Cell Res. 2014;24(1):58–68. https://doi.org/10.1038/cr.2013.159.

    Article 
    CAS 

    Google Scholar
     

  • Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA. Dynamic and transient interactions of Atg9 with autophagosomes, however not membrane integration, are required for autophagy. Mol Biol Cell. 2012;23(10):1860–73. https://doi.org/10.1091/mbc.E11-09-0746.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Li L, Hou C, Lai Y, Lengthy J, Liu J, Zhong Q, Diao J. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol. 2016;60:97–104. https://doi.org/10.1016/j.semcdb.2016.07.009.

    Article 
    CAS 

    Google Scholar
     

  • Clarke AJ, Simon AK. Autophagy within the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol. 2019;19(3):170–83. https://doi.org/10.1038/s41577-018-0095-2.

    Article 
    CAS 

    Google Scholar
     

  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic brokers in mice. Science. 2011;334(6062):1573–7. https://doi.org/10.1126/science.1208347.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, irritation, and immunity: a troika governing most cancers and its remedy. Cell. 2016;166(2):288–98. https://doi.org/10.1016/j.cell.2016.05.051.

    Article 
    CAS 

    Google Scholar
     

  • Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 2010;32(2):227–39. https://doi.org/10.1016/j.immuni.2009.12.006.

    Article 
    CAS 

    Google Scholar
     

  • Seto S, Tsujimura Ok, Horii T, Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis an infection in dendritic cells. PLoS ONE. 2013;8(12): e86017. https://doi.org/10.1371/journal.pone.0086017.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hahn T, Akporiaye ET. α-TEA as a stimulator of tumor autophagy and enhancer of antigen cross-presentation. Autophagy. 2013;9(3):429–31. https://doi.org/10.4161/auto.22969.

    Article 
    CAS 

    Google Scholar
     

  • Iwai Y, Hamanishi J, Chamoto Ok, Honjo T. Most cancers immunotherapies concentrating on the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26. https://doi.org/10.1186/s12929-017-0329-9.

    Article 
    CAS 

    Google Scholar
     

  • Topalian SL, Drake CG, Pardoll DM. Focusing on the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12. https://doi.org/10.1016/j.coi.2011.12.009.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Yao H, Li C, Shi H, Lan J, Li Z, Zhang Y, Liang L, Fang JY, Xu J. HIP1R targets PD-L1 to lysosomal degradation to change T cell-mediated cytotoxicity. Nat Chem Biol. 2019;15(1):42–50. https://doi.org/10.1038/s41589-018-0161-x.

    Article 
    CAS 

    Google Scholar
     

  • White E, Lattime EC, Guo JY. Autophagy regulates stress responses, metabolism, and anticancer immunity. Tendencies Most cancers. 2021;7(8):778–89. https://doi.org/10.1016/j.trecan.2021.05.003.

    Article 
    CAS 

    Google Scholar
     

  • Deretic V. Autophagy in irritation, an infection, and immunometabolism. Immunity. 2021;54(3):437–53. https://doi.org/10.1016/j.immuni.2021.01.018.

    Article 
    CAS 

    Google Scholar
     

  • Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F. Autophagy within the cancer-immunity dialogue. Adv Drug Deliv Rev. 2021;169:40–50. https://doi.org/10.1016/j.addr.2020.12.003.

    Article 
    CAS 

    Google Scholar
     

  • Lowe MM, Boothby I, Clancy S, Ahn RS, Liao W, Nguyen DN, Schumann Ok, Marson A, Mahuron KM, Kingsbury GA, et al. Regulatory T cells use arginase 2 to boost their metabolic health in tissues. JCI Perception. 2019;4:24. https://doi.org/10.1172/jci.perception.129756.

    Article 

    Google Scholar
     

  • Liu Y, Zhang H, Wang Z, Wu P, Gong W. 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma sufferers with despair through autophagy/pSTAT3. Eur J Most cancers. 2019;114:8–24. https://doi.org/10.1016/j.ejca.2019.03.017.

    Article 
    CAS 

    Google Scholar
     

  • Zhan L, Zhang J, Wei B, Cao Y. Selective autophagy of NLRC5 promotes immune evasion of endometrial most cancers. Autophagy. 2022;18(4):942–3. https://doi.org/10.1080/15548627.2022.2037119.

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto Ok, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, Sohn ASW, Mukhopadhyay S, Lin EY, Parker SJ, et al. Autophagy promotes immune evasion of pancreatic most cancers by degrading MHC-I. Nature. 2020;581(7806):100–5. https://doi.org/10.1038/s41586-020-2229-5.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A, et al. Contribution of RIP3 and MLKL to immunogenic cell loss of life signaling in most cancers chemotherapy. Oncoimmunology. 2016;5(6): e1149673. https://doi.org/10.1080/2162402x.2016.1149673.

    Article 

    Google Scholar
     

  • Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy-related proteins within the immune system. Nat Immunol. 2015;16(10):1014–24. https://doi.org/10.1038/ni.3273.

    Article 
    CAS 

    Google Scholar
     

  • Li X, He S, Ma B. Autophagy and autophagy-related proteins in most cancers. Mol Most cancers. 2020;19(1):12. https://doi.org/10.1186/s12943-020-1138-4.

    Article 
    CAS 

    Google Scholar
     

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka Ok, Mizushima N. Autophagy-deficient mice develop a number of liver tumors. Genes Dev. 2011;25(8):795–800. https://doi.org/10.1101/gad.2016211.

    Article 
    CAS 

    Google Scholar
     

  • Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, Von Hoff DD, Maitra A, Kimmelman AC. Autophagy is essential for pancreatic tumor progress and development in tumors with p53 alterations. Most cancers Discov. 2014;4(8):905–13. https://doi.org/10.1158/2159-8290.Cd-14-0362.

    Article 
    CAS 

    Google Scholar
     

  • Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, et al. p53 standing determines the position of autophagy in pancreatic tumour growth. Nature. 2013;504(7479):296–300. https://doi.org/10.1038/nature12865.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie X, Koh JY, Value S, White E, Mehnert JM. Atg7 overcomes senescence and promotes progress of BrafV600E-driven melanoma. Most cancers Discov. 2015;5(4):410–23. https://doi.org/10.1158/2159-8290.Cd-14-1473.

    Article 
    CAS 

    Google Scholar
     

  • Degenhardt Ok, Mathew R, Beaudoin B, Bray Ok, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, et al. Autophagy promotes tumor cell survival and restricts necrosis, irritation, and tumorigenesis. Most cancers Cell. 2006;10(1):51–64. https://doi.org/10.1016/j.ccr.2006.06.001.

    Article 
    CAS 

    Google Scholar
     

  • Murthy A, Li Y, Peng I, Reichelt M, Katakam AK, Noubade R, Roose-Girma M, DeVoss J, Diehl L, Graham RR, et al. A Crohn’s illness variant in Atg16l1 enhances its degradation by caspase 3. Nature. 2014;506(7489):456–62. https://doi.org/10.1038/nature13044.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, et al. Lack of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta manufacturing. Nature. 2008;456(7219):264–8. https://doi.org/10.1038/nature07383.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablanca EJ, Norman JM, Liu TC, Heath RJ, et al. Atg16L1 T300A variant decreases selective autophagy leading to altered cytokine signaling and decreased antibacterial protection. Proc Natl Acad Sci U S A. 2014;111(21):7741–6. https://doi.org/10.1073/pnas.1407001111.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras Ok, Simonsen A, Johansen T, Tavernarakis N, et al. Autophagy in wholesome growing old and illness. Nat Getting older. 2021;1(8):634–50. https://doi.org/10.1038/s43587-021-00098-4.

    Article 

    Google Scholar
     

  • Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging through nanotheranostics in combating most cancers. Chem Soc Rev. 2019;48(7):2053–108. https://doi.org/10.1039/c8cs00618k.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Pan X, Liu H. Two-dimensional nanomaterials for photothermal remedy. Angew Chem Int Ed Engl. 2020;59(15):5890–900. https://doi.org/10.1002/anie.201911477.

    Article 
    CAS 

    Google Scholar
     

  • Tsai MF, Chang SH, Cheng FY, Shanmugam V, Cheng YS, Su CH, Yeh CS. Au nanorod design as light-absorber within the first and second organic near-infrared home windows for in vivo photothermal remedy. ACS Nano. 2013;7(6):5330–42. https://doi.org/10.1021/nn401187c.

    Article 
    CAS 

    Google Scholar
     

  • Du J, Wang X, Dong X, Zhang C, Mei L, Zang Y, Yan L, Zhang H, Gu Z. Enhanced radiosensitization of ternary Cu(3)BiSe(3) nanoparticles by photo-induced hyperthermia within the second near-infrared organic window. Nanoscale. 2019;11(15):7157–65. https://doi.org/10.1039/c8nr09618j.

    Article 
    CAS 

    Google Scholar
     

  • Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, et al. Rational Design of Molecular Fluorophores for Organic Imaging within the NIR-II Window. Adv Mater. 2017;29:12. https://doi.org/10.1002/adma.201605497.

    Article 
    CAS 

    Google Scholar
     

  • Yin W, Bao T, Zhang X, Gao Q, Yu J, Dong X, Yan L, Gu Z, Zhao Y. Biodegradable MoO(x) nanoparticles with environment friendly near-infrared photothermal and photodynamic synergetic most cancers remedy on the second organic window. Nanoscale. 2018;10(3):1517–31. https://doi.org/10.1039/c7nr07927c.

    Article 
    CAS 

    Google Scholar
     

  • Canchi DR, Paschek D, García AE. Equilibrium research of protein denaturation by urea. J Am Chem Soc. 2010;132(7):2338–44. https://doi.org/10.1021/ja909348c.

    Article 
    CAS 

    Google Scholar
     

  • Lepock JR. Function of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperthermia. 2004;20(2):115–30. https://doi.org/10.1080/02656730310001637334.

    Article 
    CAS 

    Google Scholar
     

  • Kampinga HH, Brunsting JF, Stege GJ, Burgman PW, Konings AW. Thermal protein denaturation and protein aggregation in cells made thermotolerant by varied chemical substances: position of warmth shock proteins. Exp Cell Res. 1995;219(2):536–46. https://doi.org/10.1006/excr.1995.1262.

    Article 
    CAS 

    Google Scholar
     

  • Meredith SC. Protein denaturation and aggregation: mobile responses to denatured and aggregated proteins. Ann N Y Acad Sci. 2005;1066:181–221. https://doi.org/10.1196/annals.1363.030.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang Y, Yang T, Wang Q, Lv X, Tune X, Ke H, Guo Z, Huang X, Hu J, Li Z, et al. Albumin-coordinated meeting of clearable platinum nanodots for photo-induced most cancers theranostics. Biomaterials. 2018;154:248–60. https://doi.org/10.1016/j.biomaterials.2017.10.030.

    Article 
    CAS 

    Google Scholar
     

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79. https://doi.org/10.1039/c1cs15237h.

    Article 
    CAS 

    Google Scholar
     

  • Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, et al. Current advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225–331. https://doi.org/10.1021/acs.chemrev.6b00558.

    Article 
    CAS 

    Google Scholar
     

  • Huang Ok, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metallic carbides and nitrides (MXenes) for biomedical functions. Chem Soc Rev. 2018;47(14):5109–24. https://doi.org/10.1039/c7cs00838d.

    Article 
    CAS 

    Google Scholar
     

  • Chen YW, Su YL, Hu SH, Chen SY. Functionalized graphene nanocomposites for enhancing photothermal remedy in tumor remedy. Adv Drug Deliv Rev. 2016;105(Pt B):190–204. https://doi.org/10.1016/j.addr.2016.05.022.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Rao J, Pu Ok. Current progress on semiconducting polymer nanoparticles for molecular imaging and most cancers phototherapy. Biomaterials. 2018;155:217–35. https://doi.org/10.1016/j.biomaterials.2017.11.025.

    Article 
    CAS 

    Google Scholar
     

  • Banstola A, Poudel Ok, Emami F, Ku SK, Jeong JH, Kim JO, Yook S. Localized remedy utilizing anti-PD-L1 anchored and NIR-responsive hole gold nanoshell (HGNS) loaded with doxorubicin (DOX) for the remedy of regionally superior melanoma. Nanomedicine. 2021;33: 102349. https://doi.org/10.1016/j.nano.2020.102349.

    Article 
    CAS 

    Google Scholar
     

  • Poudel Ok, Park S, Hwang J, Ku SK, Yong CS, Kim JO, Byeon JH. Photothermally Modulatable and Structurally Disintegratable Sub-8-nm Au(1)Ag(9) embedded nanoblocks for mixture most cancers remedy produced by plug-in meeting. ACS Nano. 2020;14(9):11040–54. https://doi.org/10.1021/acsnano.9b09731.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Li X, Tse BW, Yang H, Thorling CA, Liu Y, Touraud M, Chouane JB, Liu X, Roberts MS, et al. Indocyanine green-incorporating nanoparticles for most cancers theranostics. Theranostics. 2018;8(5):1227–42. https://doi.org/10.7150/thno.22872.

    Article 
    CAS 

    Google Scholar
     

  • Guo F, Yu M, Wang J, Tan F, Li N. Sensible IR780 theranostic nanocarrier for tumor-specific remedy: hyperthermia-mediated bubble-generating and folate-targeted liposomes. ACS Appl Mater Interfaces. 2015;7(37):20556–67. https://doi.org/10.1021/acsami.5b06552.

    Article 
    CAS 

    Google Scholar
     

  • Gao J, Wang WQ, Pei Q, Lord MS, Yu HJ. Engineering nanomedicines by boosting immunogenic cell loss of life for improved most cancers immunotherapy. Acta Pharmacol Sin. 2020;41(7):986–94. https://doi.org/10.1038/s41401-020-0400-z.

    Article 
    CAS 

    Google Scholar
     

  • Chen Q, Solar T, Jiang C. Current developments in nanomedicine for “chilly” tumor immunotherapy. Nanomicro Lett. 2021;13(1):92. https://doi.org/10.1007/s40820-021-00622-6.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang F, Lu G, Wen X, Li F, Ji X, Li Q, Wu M, Cheng Q, Yu Y, Tang J, et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally managed most cancers photothermal/immunotherapy. J Management Launch. 2020;326:131–9. https://doi.org/10.1016/j.jconrel.2020.06.015.

    Article 
    CAS 

    Google Scholar
     

  • Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, et al. Magnetic particle imaging-guided heating in vivo utilizing gradient fields for arbitrary localization of magnetic hyperthermia remedy. ACS Nano. 2018;12(4):3699–713. https://doi.org/10.1021/acsnano.8b00893.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Yang Z, Huang X, Yu G, Wang S, Zhou Z, Shen Z, Fan W, Liu Y, Davisson M, et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal remedy. ACS Nano. 2018;12(8):8129–37. https://doi.org/10.1021/acsnano.8b02980.

    Article 
    CAS 

    Google Scholar
     

  • Jiang X, Zhang S, Ren F, Chen L, Zeng J, Zhu M, Cheng Z, Gao M, Li Z. Ultrasmall Magnetic CuFeSe(2) ternary nanocrystals for multimodal imaging guided photothermal remedy of most cancers. ACS Nano. 2017;11(6):5633–45. https://doi.org/10.1021/acsnano.7b01032.

    Article 
    CAS 

    Google Scholar
     

  • Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodríguez E, García Solé J. Nanoparticles for photothermal therapies. Nanoscale. 2014;6(16):9494–530. https://doi.org/10.1039/c4nr00708e.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yavari N, Andersson-Engels S, Segersten U, Malmstrom PU. An summary on preclinical and scientific experiences with photodynamic remedy for bladder most cancers. Can J Urol. 2011;18(4):5778–86.


    Google Scholar
     

  • Inexperienced B, Cobb AR, Hopper C. Photodynamic remedy within the administration of lesions of the pinnacle and neck. Br J Oral Maxillofac Surg. 2013;51(4):283–7. https://doi.org/10.1016/j.bjoms.2012.11.011.

    Article 

    Google Scholar
     

  • Kostović Ok, Pastar Z, Ceović R, Mokos ZB, Buzina DS, Stanimirović A. Photodynamic remedy in dermatology: present remedies and implications. Coll Antropol. 2012;36(4):1477–81.


    Google Scholar
     

  • Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic remedy: an rising paradigm. Adv Drug Deliv Rev. 2008;60(15):1627–37. https://doi.org/10.1016/j.addr.2008.08.003.

    Article 
    CAS 

    Google Scholar
     

  • Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic remedy: half one-photosensitizers, photochemistry and mobile localization. Photodiagnosis Photodyn Ther. 2004;1(4):279–93. https://doi.org/10.1016/s1572-1000(05)00007-4.

    Article 
    CAS 

    Google Scholar
     

  • Hong EJ, Choi DG, Shim MS. Focused and efficient photodynamic remedy for most cancers utilizing functionalized nanomaterials. Acta Pharm Sin B. 2016;6(4):297–307. https://doi.org/10.1016/j.apsb.2016.01.007.

    Article 

    Google Scholar
     

  • Agostinis P, Berg Ok, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al. Photodynamic remedy of most cancers: an replace. CA Most cancers J Clin. 2011;61(4):250–81. https://doi.org/10.3322/caac.20114.

    Article 

    Google Scholar
     

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori Ok. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a overview. J Management Launch. 2000;65(1–2):271–84. https://doi.org/10.1016/s0168-3659(99)00248-5.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Liu L, Liang R, Luo Z, He H, Wu Z, Tian H, Zheng M, Ma Y, Cai L. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic remedy for eliciting anti-tumor immunity and abscopal impact. ACS Nano. 2018;12(8):8633–45. https://doi.org/10.1021/acsnano.8b04371.

    Article 
    CAS 

    Google Scholar
     

  • Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, et al. Focusing on photodynamic and photothermal remedy to the endoplasmic reticulum enhances immunogenic most cancers cell loss of life. Nat Commun. 2019;10(1):3349. https://doi.org/10.1038/s41467-019-11269-8.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell loss of life in most cancers remedy: current and rising inducers. J Cell Mol Med. 2019;23(8):4854–65. https://doi.org/10.1111/jcmm.14356.

    Article 

    Google Scholar
     

  • Adkins I, Fucikova J, Garg AD, Agostinis P, Špíšek R. Bodily modalities inducing immunogenic tumor cell loss of life for most cancers immunotherapy. Oncoimmunology. 2014;3(12): e968434. https://doi.org/10.4161/21624011.2014.968434.

    Article 
    CAS 

    Google Scholar
     

  • Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metallic medication and immunogenic cell loss of life. J Inorg Biochem. 2016;165:71–9. https://doi.org/10.1016/j.jinorgbio.2016.06.021.

    Article 
    CAS 

    Google Scholar
     

  • Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and penalties of necroinflammation. Physiol Rev. 2018;98(2):727–80. https://doi.org/10.1152/physrev.00041.2016.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Waxman DJ. Immunogenic chemotherapy: Dose and schedule dependence and mixture with immunotherapy. Most cancers Lett. 2018;419:210–21. https://doi.org/10.1016/j.canlet.2018.01.050.

    Article 
    CAS 

    Google Scholar
     

  • Bailly C, Thuru X, Quesnel B. Mixed cytotoxic chemotherapy and immunotherapy of most cancers: trendy occasions. NAR Most cancers. 2020;2(1):2. https://doi.org/10.1093/narcan/zcaa002.

    Article 

    Google Scholar
     

  • Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell loss of life and its relevance for most cancers remedy. Cell Loss of life Dis. 2020;11(11):1013. https://doi.org/10.1038/s41419-020-03221-2.

    Article 
    CAS 

    Google Scholar
     

  • Wang YJ, Fletcher R, Yu J, Zhang L. Immunogenic results of chemotherapy-induced tumor cell loss of life. Genes Dis. 2018;5(3):194–203. https://doi.org/10.1016/j.gendis.2018.05.003.

    Article 
    CAS 

    Google Scholar
     

  • Inoue H, Tani Ok. Multimodal immunogenic most cancers cell loss of life as a consequence of anticancer cytotoxic remedies. Cell Loss of life Differ. 2014;21(1):39–49. https://doi.org/10.1038/cdd.2013.84.

    Article 
    CAS 

    Google Scholar
     

  • Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh Ok, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Present Approaches for Mixture Remedy of Most cancers: The Function of Immunogenic Cell Loss of life. Cancers (Basel). 2020;12:4. https://doi.org/10.3390/cancers12041047.

    Article 
    CAS 

    Google Scholar
     

  • Ocadlikova D, Lecciso M, Isidori A, Loscocco F, Visani G, Amadori S, Cavo M, Curti A. Chemotherapy-induced tumor cell loss of life on the crossroads between immunogenicity and immunotolerance: give attention to acute myeloid leukemia. Entrance Oncol. 2019;9:1004. https://doi.org/10.3389/fonc.2019.01004.

    Article 

    Google Scholar
     

  • Banstola A, Pham TT, Jeong JH, Yook S. Polydopamine-tailored paclitaxel-loaded polymeric microspheres with adhered NIR-controllable gold nanoparticles for chemo-phototherapy of pancreatic most cancers. Drug Deliv. 2019;26(1):629–40. https://doi.org/10.1080/10717544.2019.1628118.

    Article 
    CAS 

    Google Scholar
     

  • Bugaut H, Bruchard M, Berger H, Derangère V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Végran F, Rébé C, et al. Bleomycin exerts ambivalent antitumor immune impact by triggering each immunogenic cell loss of life and proliferation of regulatory T cells. PLoS ONE. 2013;8(6): e65181. https://doi.org/10.1371/journal.pone.0065181.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Asam C, Buerger Ok, Felthaus O, Brébant V, Rachel R, Prantl L, Witzgall R, Haerteis S, Aung T. Subcellular localization of the chemotherapeutic agent doxorubicin in renal epithelial cells and in tumor cells utilizing correlative gentle and electron microscopy. Clin Hemorheol Microcirc. 2019;73(1):157–67. https://doi.org/10.3233/ch-199212.

    Article 
    CAS 

    Google Scholar
     

  • Poudel Ok, Gautam M, Maharjan S, Jeong JH, Choi HG, Khan GM, Yong CS, Kim JO. Twin stimuli-responsive ursolic acid-embedded nanophytoliposome for focused antitumor remedy. Int J Pharm. 2020;582: 119330. https://doi.org/10.1016/j.ijpharm.2020.119330.

    Article 
    CAS 

    Google Scholar
     

  • Liu Q, Chen F, Hou L, Shen L, Zhang X, Wang D, Huang L. Nanocarrier-mediated chemo-immunotherapy arrested most cancers development and induced tumor dormancy in desmoplastic melanoma. ACS Nano. 2018;12(8):7812–25. https://doi.org/10.1021/acsnano.8b01890.

    Article 
    CAS 

    Google Scholar
     

  • Liu B, Hu F, Zhang J, Wang C, Li L. A biomimetic coordination nanoplatform for managed encapsulation and supply of drug-gene mixtures. Angew Chem Int Ed Engl. 2019;58(26):8804–8. https://doi.org/10.1002/anie.201903417.

    Article 
    CAS 

    Google Scholar
     

  • Li F, Lu J, Kong X, Hyeon T, Ling D. Dynamic nanoparticle assemblies for biomedical functions. Adv Mater. 2017;29:14. https://doi.org/10.1002/adma.201605897.

    Article 
    CAS 

    Google Scholar
     

  • Wardman P, Candeias LP. Fenton chemistry: an introduction. Radiat Res. 1996;145(5):523–31.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong Z, Feng L, Chao Y, Hao Y, Chen M, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced most cancers chemotherapy and radiotherapy. Nano Lett. 2019;19(2):805–15. https://doi.org/10.1021/acs.nanolett.8b03905.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. Most cancers remedy by nanoparticle-facilitated fenton response. ACS Nano. 2018;12(12):11819–37. https://doi.org/10.1021/acsnano.8b07635.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtar ML, Li Y. A cascade-reaction enabled synergistic most cancers hunger/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomater Sci. 2019;7(9):3683–92. https://doi.org/10.1039/c9bm00641a.

    Article 
    CAS 

    Google Scholar
     

  • Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang XJ, Tao X, et al. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided most cancers remedy primarily based on pH-Delicate Fe(5)C(2)@Fe(3)O(4) Nanoparticles. ACS Nano. 2019;13(9):10002–14. https://doi.org/10.1021/acsnano.9b01740.

    Article 
    CAS 

    Google Scholar
     

  • Ma P, Xiao H, Yu C, Liu J, Cheng Z, Tune H, Zhang X, Li C, Wang J, Gu Z, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated technology of extremely poisonous reactive oxygen species. Nano Lett. 2017;17(2):928–37. https://doi.org/10.1021/acs.nanolett.6b04269.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, Tang B. Programmed launch of dihydroartemisinin for synergistic most cancers remedy utilizing a CaCO(3) mineralized metal-organic framework. Angew Chem Int Ed Engl. 2019;58(40):14134–9. https://doi.org/10.1002/anie.201907388.

    Article 
    CAS 

    Google Scholar
     

  • Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang SB, Feng J, Zhang XZ. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis together with imaging-guided photodynamic remedy. ACS Nano. 2018;12(12):12181–92. https://doi.org/10.1021/acsnano.8b05860.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Ji X, Tong WWL, Askhatova D, Yang T, Cheng H, Wang Y, Shi J. Engineering multifunctional RNAi nanomedicine to concurrently goal most cancers hallmarks for combinatorial remedy. Angew Chem Int Ed Engl. 2018;57(6):1510–3. https://doi.org/10.1002/anie.201710144.

    Article 
    CAS 

    Google Scholar
     

  • Ke W, Li J, Mohammed F, Wang Y, Tou Ok, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, et al. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative most cancers remedy. ACS Nano. 2019;13(2):2357–69. https://doi.org/10.1021/acsnano.8b09082.

    Article 
    CAS 

    Google Scholar
     

  • Qian X, Zhang J, Gu Z, Chen Y. Nanocatalysts-augmented Fenton chemical response for nanocatalytic tumor remedy. Biomaterials. 2019;211:1–13. https://doi.org/10.1016/j.biomaterials.2019.04.023.

    Article 
    CAS 

    Google Scholar
     

  • Mishchenko TA, Balalaeva IV, Vedunova MV, Krysko DV. Ferroptosis and photodynamic remedy synergism: enhancing anticancer remedy. Tendencies Most cancers. 2021;7(6):484–7. https://doi.org/10.1016/j.trecan.2021.01.013.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Rong L. Cascade reaction-mediated environment friendly ferroptosis synergizes with immunomodulation for high-performance most cancers remedy. Biomater Sci. 2020;8(22):6272–85. https://doi.org/10.1039/d0bm01168aMedline.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Ok, Ma Z, Li S, Wu Y, Zhang J, Zhang W, Zhao Y, Han H. Disruption of twin homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials. 2022;284: 121502. https://doi.org/10.1016/j.biomaterials.2022.121502Medline.

    Article 
    CAS 

    Google Scholar
     

  • Bao W, Liu X, Lv Y, Lu GH, Li F, Zhang F, Liu B, Li D, Wei W, Li Y. Nanolongan with a number of on-demand conversions for ferroptosis-apoptosis mixed anticancer remedy. ACS Nano. 2019;13(1):260–73. https://doi.org/10.1021/acsnano.8b05602.

    Article 
    CAS 

    Google Scholar
     

  • He YJ, Liu XY, Xing L, Wan X, Chang X, Jiang HL. Fenton reaction-independent ferroptosis remedy through glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;241: 119911. https://doi.org/10.1016/j.biomaterials.2020.119911.

    Article 
    CAS 

    Google Scholar
     

  • Xue CC, Li MH, Zhao Y, Zhou J, Hu Y, Cai KY, Zhao Y, Yu SH, Luo Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO(3) nanoformulation triggers ferroptosis in goal tumor cells. Sci Adv. 2020;6(18):1346. https://doi.org/10.1126/sciadv.aax1346FromNLM.

    Article 
    ADS 

    Google Scholar
     

  • Torti SV, Torti FM. Iron and most cancers: extra ore to be mined. Nat Rev Most cancers. 2013;13(5):342–55. https://doi.org/10.1038/nrc3495.

    Article 
    CAS 

    Google Scholar
     

  • Morales M, Xue X. Focusing on iron metabolism in most cancers remedy. Theranostics. 2021;11(17):8412–29. https://doi.org/10.7150/thno.59092.

    Article 
    CAS 

    Google Scholar
     

  • Chin YC, Yang LX, Hsu FT, Hsu CW, Chang TW, Chen HY, Chen LY, Chia ZC, Hung CH, Su WC, et al. Iron oxide@chlorophyll clustered nanoparticles eradicate bladder most cancers by photodynamic immunotherapy-initiated ferroptosis and immunostimulation. J Nanobiotechnol. 2022;20(1):373. https://doi.org/10.1186/s12951-022-01575-7Medline.

    Article 
    CAS 

    Google Scholar
     

  • Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51(5):575-586.e574. https://doi.org/10.1016/j.devcel.2019.10.007.

    Article 
    CAS 

    Google Scholar
     

  • Olejarz W, Dominiak A, Żołnierzak A, Kubiak-Tomaszewska G, Lorenc T. Tumor-derived exosomes in immunosuppression and immunotherapy. J Immunol Res. 2020;2020:6272498. https://doi.org/10.1155/2020/6272498.

    Article 
    CAS 

    Google Scholar
     

  • Xie L, Li J, Wang G, Sang W, Xu M, Li W, Yan J, Li B, Zhang Z, Zhao Q, et al. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97. https://doi.org/10.1021/jacs.1c09753.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Chen Q, Tune H, Zhang Y, Chen H, Liu P, Solar T, Jiang C. A triple therapeutic technique with antiexosomal iron efflux for enhanced ferroptosis remedy and immunotherapy. Small. 2022;18(41): e2201704. https://doi.org/10.1002/smll.202201704.

    Article 
    CAS 

    Google Scholar
     

  • Gu Z, Liu T, Liu C, Yang Y, Tang J, Tune H, Wang Y, Yang Y, Yu C. Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal actions. Nano Lett. 2021;21(15):6471–9. https://doi.org/10.1021/acs.nanolett.1c01401.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hsieh CH, Hsieh HC, Shih FS, Wang PW, Yang LX, Shieh DB, Wang YC. An progressive NRF2 nano-modulator induces lung most cancers ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics. 2021;11(14):7072–91. https://doi.org/10.7150/thno.57803.

    Article 
    CAS 

    Google Scholar
     

  • Jiang Q, Wang Ok, Zhang X, Ouyang B, Liu H, Pang Z, Yang W. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced most cancers immunotherapy. Small. 2020;16(22): e2001704. https://doi.org/10.1002/smll.202001704.

    Article 
    CAS 

    Google Scholar
     

  • Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, et al. Iron oxide nanoparticles inhibit tumour progress by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94. https://doi.org/10.1038/nnano.2016.168.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano. 2018;12(11):11355–65. https://doi.org/10.1021/acsnano.8b06201.

    Article 
    CAS 

    Google Scholar
     

  • Kroll AV, Fang RH, Zhang L. Biointerfacing and functions of cell membrane-coated nanoparticles. Bioconjug Chem. 2017;28(1):23–32. https://doi.org/10.1021/acs.bioconjchem.6b00569.

    Article 
    CAS 

    Google Scholar
     

  • Zhen X, Cheng P, Pu Ok. Current advances in cell membrane-camouflaged nanoparticles for most cancers phototherapy. Small. 2019;15(1): e1804105. https://doi.org/10.1002/smll.201804105.

    Article 
    CAS 

    Google Scholar
     

  • Zheng DW, Lei Q, Zhu JY, Fan JX, Li CX, Li C, Xu Z, Cheng SX, Zhang XZ. Switching apoptosis to ferroptosis: metal-organic community for high-efficiency anticancer remedy. Nano Lett. 2017;17(1):284–91. https://doi.org/10.1021/acs.nanolett.6b04060.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen Z, Tune J, Yung BC, Zhou Z, Wu A, Chen X. Rising methods of most cancers remedy primarily based on ferroptosis. Adv Mater. 2018;30(12): e1704007. https://doi.org/10.1002/adma.201704007.

    Article 
    CAS 

    Google Scholar
     

  • Liu G, Gao J, Ai H, Chen X. Functions and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9(9–10):1533–45. https://doi.org/10.1002/smll.201201531.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their software in most cancers remedy by a localized fenton response. Angew Chem Int Ed Engl. 2016;55(6):2101–6. https://doi.org/10.1002/anie.201510031.

    Article 
    CAS 

    Google Scholar
     

  • Harris G, Palosaari T, Magdolenova Z, Mennecozzi M, Gineste JM, Saavedra L, Milcamps A, Huk A, Collins AR, Dusinska M, et al. Iron oxide nanoparticle toxicity testing utilizing high-throughput evaluation and high-content imaging. Nanotoxicology. 2015;9(Suppl 1):87–94. https://doi.org/10.3109/17435390.2013.816797.

    Article 
    CAS 

    Google Scholar
     

  • Xiong H, Wang C, Wang Z, Lu H, Yao J. Self-assembled nano-activator constructed ferroptosis-immunotherapy by hijacking endogenous iron to intracellular optimistic suggestions loop. J Management Launch. 2021;332:539–52. https://doi.org/10.1016/j.jconrel.2021.03.007.

    Article 
    CAS 

    Google Scholar
     

  • Zhang M, Qin X, Zhao Z, Du Q, Li Q, Jiang Y, Luan Y. A self-amplifying nanodrug to control the Janus-faced nature of ferroptosis for tumor remedy. Nanoscale Horiz. 2022;7(2):198–210. https://doi.org/10.1039/d1nh00506e.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han W, Duan X, Ni Ok, Li Y, Chan C, Lin W. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate most cancers immunotherapy. Biomaterials. 2022;280: 121315. https://doi.org/10.1016/j.biomaterials.2021.121315.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Su R, Bao X, Cao Ok, Du Y, Wang N, Wang J, Xing F, Yan F, Huang Ok, et al. Glycyrrhetinic acid nanoparticles mixed with ferrotherapy for improved most cancers immunotherapy. Acta Biomater. 2022;144:109–20. https://doi.org/10.1016/j.actbio.2022.03.030.

    Article 
    CAS 

    Google Scholar
     

  • Tune R, Li T, Ye J, Solar F, Hou B, Saeed M, Gao J, Wang Y, Zhu Q, Xu Z, et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell loss of life for immunotherapy of most cancers. Adv Mater. 2021;33(31): e2101155. https://doi.org/10.1002/adma.202101155.

    Article 
    CAS 

    Google Scholar
     

  • Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-depleting nanomedicines for synergistic most cancers remedy. ACS Nano. 2021;15(5):8039–68. https://doi.org/10.1021/acsnano.1c00498.

    Article 
    CAS 

    Google Scholar
     

  • Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented most cancers remedy. Chem Soc Rev. 2021;50(10):6013–41. https://doi.org/10.1039/d0cs00718h.

    Article 
    CAS 

    Google Scholar
     

  • Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P, et al. Pyroptosis: a brand new frontier in most cancers. Biomed Pharmacother. 2020;121: 109595. https://doi.org/10.1016/j.biopha.2019.109595.

    Article 
    CAS 

    Google Scholar
     

  • Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, variations, and crosstalk. Cell Loss of life Differ. 2019;26(1):99–114. https://doi.org/10.1038/s41418-018-0212-6.

    Article 

    Google Scholar
     

  • Van Opdenbosch N, Lamkanfi M. Caspases in cell loss of life, irritation, and illness. Immunity. 2019;50(6):1352–64. https://doi.org/10.1016/j.immuni.2019.05.020.

    Article 
    CAS 

    Google Scholar
     

  • Karki R, Kanneganti TD. Diverging inflammasome indicators in tumorigenesis and potential concentrating on. Nat Rev Most cancers. 2019;19(4):197–214. https://doi.org/10.1038/s41568-019-0123-y.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang Ok, Shao F. Chemotherapy medication induce pyroptosis by caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99–103. https://doi.org/10.1038/nature22393.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo W, Li Z, Huang H, Xu Z, Chen Z, Shen G, Li Z, Ren Y, Li G, Hu Y. VB12-Sericin-PBLG-IR780 nanomicelles for programming cell pyroptosis through photothermal (PTT)/Photodynamic (PDT) Impact-Induced Mitochondrial DNA (mitoDNA) Oxidative Harm. ACS Appl Mater Interfaces. 2022;14(15):17008–21. https://doi.org/10.1021/acsami.1c22804.

    Article 
    CAS 

    Google Scholar
     

  • Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell loss of life and irritation. Nat Rev Microbiol. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Tune J, Zhou F, Hoover AR, Murray C, Zhou B, Wang L, Qu J, Chen WR. NIR-triggered phototherapy and immunotherapy through an antigen-capturing nanoplatform for metastatic most cancers remedy. Adv Sci (Weinh). 2019;6(10):1802157. https://doi.org/10.1002/advs.201802157.

    Article 
    CAS 

    Google Scholar
     

  • Xiao Y, Zhang T, Ma X, Yang QC, Yang LL, Yang SC, Liang M, Xu Z, Solar ZJ. Microenvironment-responsive prodrug-induced pyroptosis boosts most cancers immunotherapy. Adv Sci (Weinh). 2021;8(24): e2101840. https://doi.org/10.1002/advs.202101840.

    Article 
    CAS 

    Google Scholar
     

  • Qiu W, Su W, Xu J, Liang M, Ma X, Xue P, Kang Y, Solar ZJ, Xu Z. Immunomodulatory-photodynamic nanostimulators for invoking pyroptosis to enhance tumor immunotherapy. Adv Healthc Mater. 2022;11(21): e2201233. https://doi.org/10.1002/adhm.202201233.

    Article 
    CAS 

    Google Scholar
     

  • Lin LS, Tune J, Tune L, Ke Ok, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, et al. Simultaneous Fenton-like ion supply and glutathione depletion by MnO(2) -based nanoagent to boost chemodynamic remedy. Angew Chem Int Ed Engl. 2018;57(18):4902–6. https://doi.org/10.1002/anie.201712027.

    Article 
    CAS 

    Google Scholar
     

  • Tang Z, Liu Y, He M, Bu W. Chemodynamic remedy: tumour microenvironment-mediated fenton and fenton-like reactions. Angew Chem Int Ed Engl. 2019;58(4):946–56. https://doi.org/10.1002/anie.201805664.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhen W, Liu Y, Wang W, Zhang M, Hu W, Jia X, Wang C, Jiang X. Particular, “Unlocking” of a nanozyme-based butterfly impact to interrupt the evolutionary health of chaotic tumors. Angew Chem Int Ed Engl. 2020;59(24):9491–7. https://doi.org/10.1002/anie.201916142Medline.

    Article 
    CAS 

    Google Scholar
     

  • Kim J, Cho HR, Jeon H, Kim D, Tune C, Lee N, Choi SH, Hyeon T. Steady O(2)-evolving MnFe(2)O(4) nanoparticle-anchored mesoporous silica nanoparticles for environment friendly photodynamic remedy in hypoxic most cancers. J Am Chem Soc. 2017;139(32):10992–5. https://doi.org/10.1021/jacs.7b05559.

    Article 
    CAS 

    Google Scholar
     

  • Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst supply. Nat Commun. 2017;8(1):357. https://doi.org/10.1038/s41467-017-00424-8.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu Y, Zhen W, Wang Y, Tune S, Zhang H. Na(2)S(2)O(8) nanoparticles set off antitumor immunotherapy by reactive oxygen species storm and surge of tumor osmolarity. J Am Chem Soc. 2020;142(52):21751–7. https://doi.org/10.1021/jacs.0c09482Medline.

    Article 
    CAS 

    Google Scholar
     

  • Ding B, Sheng J, Zheng P, Li C, Li D, Cheng Z, Ma P, Lin J. Biodegradable upconversion nanoparticles induce pyroptosis for most cancers immunotherapy. Nano Lett. 2021;21(19):8281–9. https://doi.org/10.1021/acs.nanolett.1c02790Medline.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fan JX, Deng RH, Wang H, Liu XH, Wang XN, Qin R, Jin X, Lei TR, Zheng D, Zhou PH, et al. Epigenetics-based tumor cells pyroptosis for enhancing the immunological impact of chemotherapeutic nanocarriers. Nano Lett. 2019;19(11):8049–58. https://doi.org/10.1021/acs.nanolett.9b03245.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Castano AP, Mroz P, Hamblin MR. Photodynamic remedy and anti-tumour immunity. Nat Rev Most cancers. 2006;6(7):535–45. https://doi.org/10.1038/nrc1894.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Wang J, Zhang X, Yu S, Wen D, Hu Q, Ye Y, Bomba H, Hu X, Liu Z, et al. In situ fashioned reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for mixture remedy. Sci Transl Med. 2018;10:429. https://doi.org/10.1126/scitranslmed.aan3682FromNLM.

    Article 

    Google Scholar
     

  • Zheng P, Ding B, Zhu G, Li C, Lin J. Biodegradable Ca(2+) nanomodulators activate pyroptosis by mitochondrial Ca(2+) overload for most cancers immunotherapy. Angew Chem Int Ed Engl. 2022;61(36): e202204904. https://doi.org/10.1002/anie.202204904Medline.

    Article 
    CAS 

    Google Scholar
     

  • Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng Ok, Solar RY, Zhou D, Han J, Wu Q. Tom20 senses iron-activated ROS signaling to advertise melanoma cell pyroptosis. Cell Res. 2018;28(12):1171–85. https://doi.org/10.1038/s41422-018-0090-y.

    Article 
    CAS 

    Google Scholar
     

  • Wang L, Li Ok, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, et al. Metformin induces human esophageal carcinoma cell pyroptosis by concentrating on the miR-497/PELP1 axis. Most cancers Lett. 2019;450:22–31. https://doi.org/10.1016/j.canlet.2019.02.014.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang CC, Li CG, Wang YF, Xu LH, He XH, Zeng QZ, Zeng CY, Mai FY, Hu B, Ouyang DY. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung most cancers cells through caspase-3/GSDME activation. Apoptosis. 2019;24(3–4):312–25. https://doi.org/10.1007/s10495-019-01515-1.

    Article 
    CAS 

    Google Scholar
     

  • Pathak T, Trebak M. Mitochondrial Ca(2+) signaling. Pharmacol Ther. 2018;192:112–23. https://doi.org/10.1016/j.pharmthera.2018.07.001.

    Article 
    CAS 

    Google Scholar
     

  • Xu L, Tong G, Tune Q, Zhu C, Zhang H, Shi J, Zhang Z. Enhanced intracellular Ca(2+) nanogenerator for tumor-specific synergistic remedy through disruption of mitochondrial Ca(2+) homeostasis and photothermal remedy. ACS Nano. 2018;12(7):6806–18. https://doi.org/10.1021/acsnano.8b02034.

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, Ding B, Jiang Z, Xu W, Li G, Ding J, Chen X. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell loss of life. Nano Lett. 2021;21(5):2088–93. https://doi.org/10.1021/acs.nanolett.0c04778.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dai Z, Tang J, Gu Z, Wang Y, Yang Y, Yang Y, Yu C. Eliciting immunogenic cell loss of life through a unitized nanoinducer. Nano Lett. 2020;20(9):6246–54. https://doi.org/10.1021/acs.nanolett.0c00713.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng H, Jiang XY, Zheng RR, Zuo SJ, Zhao LP, Fan GL, Xie BR, Yu XY, Li SY, Zhang XZ. A biomimetic cascade nanoreactor for tumor focused hunger therapy-amplified chemotherapy. Biomaterials. 2019;195:75–85. https://doi.org/10.1016/j.biomaterials.2019.01.003.

    Article 
    CAS 

    Google Scholar
     

  • Patel CH, Leone RD, Horton MR, Powell JD. Focusing on metabolism to control immune responses in autoimmunity and most cancers. Nat Rev Drug Discov. 2019;18(9):669–88. https://doi.org/10.1038/s41573-019-0032-5.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Zhang Y, Feng Y, Wu J, Hu Y, Lin L, Xu C, Chen J, Tang Z, Tian H, et al. Biomineralized two-enzyme nanoparticles regulate tumor glycometabolism inducing tumor cell pyroptosis and strong antitumor immunotherapy. Adv Mater. 2022;34(50): e2206851. https://doi.org/10.1002/adma.202206851.

    Article 
    CAS 

    Google Scholar
     

  • Otto T, Sicinski P. Cell cycle proteins as promising targets in most cancers remedy. Nat Rev Most cancers. 2017;17(2):93–115. https://doi.org/10.1038/nrc.2016.138.

    Article 
    CAS 

    Google Scholar
     

  • Kandoth C, McLellan MD, Vandin F, Ye Ok, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al. Mutational panorama and significance throughout 12 main most cancers sorts. Nature. 2013;502(7471):333–9. https://doi.org/10.1038/nature12634.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie Q, Chi S, Fang Y, Solar Y, Meng L, Ding J, Chen Y. PI3Kα inhibitor impairs AKT phosphorylation and synergizes with novel angiogenesis inhibitor AL3810 in human hepatocellular carcinoma. Sign Transduct Goal Ther. 2021;6(1):130. https://doi.org/10.1038/s41392-021-00522-6.

    Article 
    CAS 

    Google Scholar
     

  • George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, et al. Lack of PTEN is related to resistance to Anti-PD-1 checkpoint blockade remedy in metastatic uterine leiomyosarcoma. Immunity. 2017;46(2):197–204. https://doi.org/10.1016/j.immuni.2017.02.001.

    Article 
    CAS 

    Google Scholar
     

  • Yang Q, Ma X, Xiao Y, Zhang T, Yang L, Yang S, Liang M, Wang S, Wu Z, Xu Z, et al. Engineering prodrug nanomicelles as pyroptosis inducer for codelivery of PI3K/mTOR and CDK inhibitors to boost antitumor immunity. Acta Pharm Sin B. 2022;12(7):3139–55. https://doi.org/10.1016/j.apsb.2022.02.024.

    Article 
    CAS 

    Google Scholar
     

  • Lu H, Zhang S, Wu J, Chen M, Cai MC, Fu Y, Li W, Wang J, Zhao X, Yu Z, et al. Molecular focused therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell loss of life. Clin Most cancers Res. 2018;24(23):6066–77. https://doi.org/10.1158/1078-0432.Ccr-18-1478.

    Article 
    CAS 

    Google Scholar
     

  • Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Discipline CO, Berger AC, Hartsough EJ, Rodeck U, Alnemri ES, et al. Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment through pyroptosis. Most cancers Discov. 2020;10(2):254–69. https://doi.org/10.1158/2159-8290.Cd-19-0672.

    Article 
    CAS 

    Google Scholar
     

  • Swanton C. Cell-cycle focused therapies. Lancet Oncol. 2004;5(1):27–36. https://doi.org/10.1016/s1470-2045(03)01321-4.

    Article 
    CAS 

    Google Scholar
     

  • Hanker AB, Kaklamani V, Arteaga CL. Challenges for the scientific growth of PI3K inhibitors: methods to enhance their impression in stable tumors. Most cancers Discov. 2019;9(4):482–91. https://doi.org/10.1158/2159-8290.Cd-18-1175.

    Article 
    CAS 

    Google Scholar
     

  • Solar T, Zhang G, Wang Q, Chen Q, Chen X, Lu Y, Liu L, Zhang Y, He X, Ruan C, et al. A concentrating on theranostics nanomedicine instead method for hyperthermia perfusion. Biomaterials. 2018;183:268–79. https://doi.org/10.1016/j.biomaterials.2018.04.016.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, He Y, Li F, Huang Q, Kato TA, Corridor RP, Li CY. Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell. 2015;58(2):284–96. https://doi.org/10.1016/j.molcel.2015.03.003.

    Article 
    CAS 

    Google Scholar
     

  • Akino Ok, Toyota M, Suzuki H, Imai T, Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, et al. Identification of DFNA5 as a goal of epigenetic inactivation in gastric most cancers. Most cancers Sci. 2007;98(1):88–95. https://doi.org/10.1111/j.1349-7006.2006.00351.x.

    Article 
    CAS 

    Google Scholar
     

  • Kim MS, Chang X, Yamashita Ok, Nagpal JK, Baek JH, Wu G, Trink B, Ratovitski EA, Mori M, Sidransky D. Aberrant promoter methylation and tumor suppressive exercise of the DFNA5 gene in colorectal carcinoma. Oncogene. 2008;27(25):3624–34. https://doi.org/10.1038/sj.onc.1211021.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Li M, Ren Ok, Xia C, Li J, Yu Q, Qiu Y, Lu Z, Lengthy Y, Zhang Z, et al. On-demand autophagy cascade amplification nanoparticles exactly enhanced oxaliplatin-induced most cancers immunotherapy. Adv Mater. 2020;32(32): e2002160. https://doi.org/10.1002/adma.202002160.

    Article 
    CAS 

    Google Scholar
     

  • Ge YX, Zhang TW, Zhou L, Ding W, Liang HF, Hu ZC, Chen Q, Dong J, Xue FF, Yin XF, et al. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma utilizing an clever autophagy-controlling metallic natural framework. Biomaterials. 2022;282: 121407. https://doi.org/10.1016/j.biomaterials.2022.121407.

    Article 
    CAS 

    Google Scholar
     

  • Deretic V, Saitoh T, Akira S. Autophagy in an infection, irritation and immunity. Nat Rev Immunol. 2013;13(10):722–37. https://doi.org/10.1038/nri3532.

    Article 
    CAS 

    Google Scholar
     

  • Li TF, Xu YH, Li Ok, Wang C, Liu X, Yue Y, Chen Z, Yuan SJ, Wen Y, Zhang Q, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity by activation of autophagy. Acta Biomater. 2019;86:381–94. https://doi.org/10.1016/j.actbio.2019.01.020.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Lin YX, Wang J, Qiao SL, Liu YY, Dong WQ, Wang J, An HW, Yang C, Mamuti M, et al. In situ manipulation of dendritic cells by an autophagy-regulative nanoactivator permits efficient most cancers immunotherapy. ACS Nano. 2019;13(7):7568–77. https://doi.org/10.1021/acsnano.9b00143.

    Article 
    CAS 

    Google Scholar
     

  • Pietrocola F, Bravo-San Pedro JM, Galluzzi L, Kroemer G. Autophagy in pure and therapy-driven anticancer immunosurveillance. Autophagy. 2017;13(12):2163–70. https://doi.org/10.1080/15548627.2017.1310356.

    Article 
    CAS 

    Google Scholar
     

  • Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and mobile immune responses. Immunity. 2013;39(2):211–27. https://doi.org/10.1016/j.immuni.2013.07.017.

    Article 
    CAS 

    Google Scholar
     

  • Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, et al. Microenvironmental autophagy promotes tumour progress. Nature. 2017;541(7637):417–20. https://doi.org/10.1038/nature20815.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Galluzzi L, Yamazaki T, Kroemer G. Linking mobile stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018;19(11):731–45. https://doi.org/10.1038/s41580-018-0068-0.

    Article 
    CAS 

    Google Scholar
     

  • Galluzzi L, Bravo-San Pedro JM, Levine B, Inexperienced DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16(7):487–511. https://doi.org/10.1038/nrd.2017.22.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Jia Y, Yang J, Zhang L, Hou S, Niu X, Zhu J, Huang Y, Solar X, Xu ZP, et al. Environment friendly immunotherapy of drug-free layered double hydroxide nanoparticles through neutralizing extra acid and blocking tumor cell autophagy. ACS Nano. 2022;16(8):12036–48. https://doi.org/10.1021/acsnano.2c02183.

    Article 
    CAS 

    Google Scholar
     

  • Gatenby RA, Gillies RJ. Why do cancers have excessive cardio glycolysis? Nat Rev Most cancers. 2004;4(11):891–9. https://doi.org/10.1038/nrc1478.

    Article 
    CAS 

    Google Scholar
     

  • Hao G, Xu ZP, Li L. Manipulating extracellular tumour pH: an efficient goal for most cancers remedy. RSC Adv. 2018;8(39):22182–92. https://doi.org/10.1039/c8ra02095g.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gacche RN, Meshram RJ. Focusing on tumor micro-environment for design and growth of novel anti-angiogenic brokers arresting tumor progress. Prog Biophys Mol Biol. 2013;113(2):333–54. https://doi.org/10.1016/j.pbiomolbio.2013.10.001.

    Article 
    CAS 

    Google Scholar
     

  • Chen R, Jäättelä M, Liu B. Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers Basel. 2020. https://doi.org/10.3390/cancers12092437.

    Article 

    Google Scholar
     

  • Zhang Y, Zhang L, Gao J, Wen L. Professional-death or pro-survival: contrasting paradigms on nanomaterial-induced autophagy and exploitations for most cancers remedy. Acc Chem Res. 2019;52(11):3164–76. https://doi.org/10.1021/acs.accounts.9b00397.

    Article 
    CAS 

    Google Scholar
     

  • Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, Cho YK, Kandere-Grzybowska Ok, Grzybowski BA. Focused crystallization of mixed-charge nanoparticles in lysosomes induces selective loss of life of most cancers cells. Nat Nanotechnol. 2020;15(4):331–41. https://doi.org/10.1038/s41565-020-0643-3.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen M, Yang D, Solar Y, Liu T, Wang W, Fu J, Wang Q, Bai X, Quan G, Pan X, et al. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy through autophagy regulation technique. ACS Nano. 2021;15(2):3387–401. https://doi.org/10.1021/acsnano.0c10396.

    Article 
    CAS 

    Google Scholar
     

  • Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25(5):1037–43. https://doi.org/10.1016/j.cmet.2017.04.004.

    Article 
    CAS 

    Google Scholar
     

  • Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Sign Transduct Goal Ther. 2022;7(1):196. https://doi.org/10.1038/s41392-022-01046-3.

    Article 

    Google Scholar
     

  • Labouta HI, Asgarian N, Rinker Ok, Cramb DT. Meta-analysis of nanoparticle cytotoxicity through data-mining the literature. ACS Nano. 2019;13(2):1583–94. https://doi.org/10.1021/acsnano.8b07562.

    Article 
    CAS 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle dimension on in vivo pharmacokinetics and mobile interplay. Nanomedicine (Lond). 2016;11(6):673–92. https://doi.org/10.2217/nnm.16.5.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles