El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a assessment of in vivo research in bone defect fashions. Acta Biomater. 2017;62:1–28.
Dai W, Leng X, Wang J, Cheng J, Hu X, Ao Y. Quadriceps tendon autograft versus bone-patellar tendon–bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: a scientific assessment and meta-analysis. Am J Sports activities Med. 2022;50(12):3425–39.
Wang B, Feng C, Liu Y, Mi F, Dong J. Latest advances in biofunctional guided bone regeneration supplies for repairing faulty alveolar and maxillofacial bone: a assessment. Jpn Dent Sci Rev. 2022;58:233–48.
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Uncommon earth sensible nanomaterials for bone tissue engineering and implantology: advances, challenges, and prospects. Bioeng Transl Med. 2022;7(1): e10262.
Gu M, Li W, Jiang L, Li X. Latest progress of uncommon earth doped hydroxyapatite nanoparticles: luminescence properties, synthesis and biomedical purposes. Acta Biomater. 2022;148:22–43.
Meng J, Cui Y, Wang Y. Uncommon earth-doped nanocrystals for bioimaging within the near-infrared area. J Mater Chem B. 2022;10(42):8596–615.
Zhao PP, Ge YW, Liu XL, Ke QF, Zhang JW, Zhu ZA, et al. Ordered association of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal remedy and bone regeneration towards breast most cancers bone metastases. Chem Eng J. 2020;381: 122694.
Ge YW, Liu XL, Yu DG, Zhu ZA, Ke QF, Mao YQ, et al. Graphene-modified CePO4 nanorods successfully deal with breast cancer-induced bone metastases and regulate macrophage polarization to enhance osteo-inductive potential. J Nanobiotechnology. 2021;19(1):11.
Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate irritation and improve osteogenesis. Mater Sci Eng C. 2021;124: 112041.
Cai Z, Guo Z, Yang C, Wang F, Zhang P, Wang Y, et al. Floor biofunctionalization of gadolinium phosphate nanobunches for reinforcing osteogenesis/chondrogenesis differentiation. Int J Mol Sci. 2023;24(3):2032.
Ren N, Liang N, Yu X, Wang A, Xie J, Solar C. Ligand-free upconversion nanoparticles for cell labeling and their results on stem cell differentiation. Nanotechnology. 2020;31(14): 145101.
Ren N, Feng Z, Liang N, Xie J, Wang A, Solar C, et al. NaGdF4: Yb/Er nanoparticles of various sizes for monitoring mesenchymal stem cells and their results on cell differentiation. Mater Sci Eng C. 2020;111: 110827.
Vijayan V, Sreekumar S, Ahina KM, Lakra R, Kiran MS. Lanthanum oxide nanoparticles strengthened collagen ƙ-carrageenan hydroxyapatite biocomposite as angio-osteogenic biomaterial for in vivo osseointegration and bone restore. Adv Biol. 2023;7:2300039.
Chu M, Solar Z, Fan Z, Yu D, Mao Y, Guo Y. Bi-directional regulation capabilities of lanthanum-substituted layered double hydroxide nanohybrid scaffolds by way of activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration. Theranostics. 2021;11(14):6717–34.
Bao S, Yu D, Tang Z, Wu H, Zhang H, Wang N, et al. Conformationally regulated “nanozyme-like” cerium oxide with a number of free radical scavenging actions for osteoimmunology modulation and vascularized osseointegration. Bioact Mater. 2024;34:64–79.
Ren S, Zhou Y, Zheng Ok, Xu X, Yang J, Wang X, et al. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater. 2022;7:242–53.
Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, et al. The advances of ceria nanoparticles for biomedical purposes in orthopaedics. Int J Nanomedicine. 2020;15:7199–214.
Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, et al. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. Nanoscale. 2021;13(2):1181–94.
Peng XY, Hu M, Liao F, Yang F, Ke QF, Guo YP, et al. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Biomater Sci. 2019;7(4):1565–73.
Zhu DY, Lu B, Yin JH, Ke QF, Xu H, Zhang CQ, et al. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC by way of the Akt/GSK3β; pathway and facilitate bone restore in vivo. Int J Nanomedicine. 2019;14:1085–100.
Yadav S, Chamoli S, Kumar P, Maurya PK. Structural and purposeful insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical purposes: a assessment. Int J Biol Macromol. 2023;246: 125673.
Yang Ok, Cao W, Hao X, Xue X, Zhao J, Liu J, et al. Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells by BMP signaling pathway. Nanoscale. 2013;5(3):1205.
Wang Q, Tang Y, Ke Q, Yin W, Zhang C, Guo Y, et al. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B. 2020;8(24):5280–92.
Patra CR, Bhattacharya R, Patra S, Vlahakis NE, Gabashvili A, Koltypin Y, et al. Professional-angiogenic properties of europium (III) hydroxide nanorods. Adv Mater. 2008;20(4):753–6.
Pinna A, Torki Baghbaderani M, Vigil Hernández V, Naruphontjirakul P, Li S, McFarlane T, et al. Nanoceria offers antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis remedy. Acta Biomater. 2021;122:365–76.
Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tomida A, et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns decided in vivo with embedded Gd2O3 labels. ACS Nano. 2009;3(6):1399–406.
Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst. 2010;6(10):1813.
Dahle JT, Livi Ok, Arai Y. Results of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere. 2015;119:1365–71.
Gao C, Jin Y, Jia G, Suo X, Liu H, Liu D, et al. Y2O3 nanoparticles brought about bone tissue harm by breaking the intracellular phosphate stability in bone marrow stromal cells. ACS Nano. 2019;13(1):313–23.
Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Lanthanides as calcium mimetic species in calcium-signaling/buffering proteins: the impact of lanthanide sort on the Ca2+/Ln3+ competitors. Int J Mol Sci. 2023;24(7):6297.
Pałasz A, Czekaj P. Toxicological and cytophysiological elements of lanthanides motion. Acta Biochim Pol. 2000;47(4):1107–14.
Chandran L, Am B. Apatite matrix substituted with biologically important uncommon earth components as a man-made exhausting tissue substitute: systematic physicochemical and organic analysis. J Biomed Mater Res A. 2021;109(6):821–8.
Yamaguchi T, Chattopadhyay N, Kifor O, Sanders JL, Brown EM. Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses within the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun. 2000;279(2):363–8.
Yang XC, Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989;243(4894):1068–71.
Mlinar B, Enyeart JJ. Block of present by T-type calcium channels by trivalent metallic cations and nickel in neural rat and human cells. J Physiol. 1993;469(1):639–52.
Guo L, Davidson RM. Extracellular Ca2+ will increase cytosolic free Ca2+ in freshly remoted rat odontoblasts. J Bone Miner Res. 1999;14(8):1357–66.
Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM. Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and β-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res. 2000;15(8):1501–9.
Brayshaw LL, Smith RCG, Badaoui M, Irving JA, Value SR. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion. Metallomics. 2019;11(5):914–24.
Edington SC, Gonzalez A, Middendorf TR, Halling DB, Aldrich RW, Baiz CR. Coordination to lanthanide ions distorts binding website conformation in calmodulin. Proc Natl Acad Sci. 2018;115(14):E3126.
Zayzafoon M. Calcium/calmodulin signaling controls osteoblast development and differentiation. J Cell Biochem. 2006;97(1):56–70.
Sharma S, Sudhakara P, Omran AAB, Singh J, Ilyas RA. Latest traits and developments in conducting polymer nanocomposites for multifunctional purposes. Polymers. 2021;13(17):2898.
Yao Q, Wang F, Xu F, Leung CM, Wang T, Tang Y, et al. Electrical field-induced large pressure and photoluminescence-enhancement impact in rare-earth modified lead-free piezoelectric ceramics. ACS Appl Mater Interf. 2015;7(9):5066–75.
Jia Q, Lu H, Luo J, Zhang Y, Ni H, Zhang F, et al. Natural-inorganic rare-earth double perovskite ferroelectric with giant piezoelectric response and ferroelasticity for versatile composite vitality harvesters. Small. 2023. https://doi.org/10.1002/smll.202306989.
Fapeng Yu, Zhang S, Zhao X, Yuan D, Qin L, Wang Q-M, et al. Dielectric and electromechanical properties of uncommon earth calcium oxyborate piezoelectric crystals at excessive temperatures. IEEE Trans Ultrason Ferroelectr Freq Management. 2011;58(4):868–73.
Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Distant management of mobile capabilities: the position of sensible nanomaterials within the drugs of the longer term. Adv Healthc Mater. 2017;6(9):1700002.
Qian W, Yang W, Zhang Y, Bowen CR, Yang Y. Piezoelectric supplies for controlling electro-chemical processes. Nano Micro Lett. 2020;12(1):149.
Yan P, Qin Y, Xu Z, Han F, Wang Y, Wen Z, et al. Extremely clear Eu-doped 0.72PMN-0.28PT ceramics with wonderful piezoelectricity. ACS Appl Mater Interfaces. 2021;13(45):54210–6.
Zheng F, Tian X, Fang Z, Lin J, Lu Y, Gao W, et al. Sm-doped PIN-PMN-PT clear ceramics with excessive curie temperature, good piezoelectricity, and wonderful electro-optical properties. ACS Appl Mater Interfaces. 2023;15(5):7053–62.
Garain S, Sinha TK, Adhikary P, Henkel Ok, Sen S, Ram S, et al. Self-poled clear and versatile UV light-emitting cerium advanced–PVDF composite: a high-performance nanogenerator. ACS Appl Mater Interfaces. 2015;7(2):1298–307.
Ren HM, Wang HW, Jiang YF, Tao ZX, Mu CY, Li G. Proton conductive lanthanide-based metal-organic frameworks: synthesis methods, structural options, and up to date progress. High Curr Chem. 2022;380(2):9.
Hajjiah A, Samir E, Shehata N, Salah M. Lanthanide-doped ceria nanoparticles as bottom coaters to enhance silicon photo voltaic cell effectivity. Nanomaterials. 2018;8(6):357.
Chen Ok, Liang F, Xue D. La3+: Ni–Cl oxyhydroxide gels with enhanced electroactivity as optimistic supplies for hybrid supercapacitors. Dalton Trans. 2020;49(4):1107–15.
Solar H, Xu J, Wang Y, Shen S, Xu X, Zhang L, et al. Bone microenvironment regulative hydrogels with ROS scavenging and extended oxygen-generating for enhancing bone restore. Bioact Mater. 2023;24:477–96.
Wei F, Neal CJ, Sakthivel TS, Seal S, Kean T, Razavi M, et al. Cerium oxide nanoparticles shield towards irradiation-induced mobile harm whereas augmenting osteogenesis. Mater Sci Eng C. 2021;126: 112145.
Schröder Ok. NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med. 2019;132:67–72.
Gunawan C, Lord MS, Lovell E, Wong RJ, Jung MS, Oscar D, et al. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant exercise. ACS Omega. 2019;4(5):9473–9.
Xu Ok, Chang M, Wang Z, Yang H, Jia Y, Xu W, et al. Multienzyme-mimicking LaCoO3 nanotrigger for programming cancer-cell pyroptosis. Adv Mater. 2023;35(35):2302961.
Grebowski J, Litwinienko G. Metallofullerenols in biomedical purposes. Eur J Med Chem. 2022;238: 114481.
Maksimchuk PO, Hubenko KO, Seminko VV, Karbivskii VL, Tkachenko AS, Onishchenko AI, et al. Excessive antioxidant exercise of gadolinium-yttrium orthovanadate nanoparticles in cell-free and organic milieu. Nanotechnology. 2021;33(5):055701.
Tang KS. Antioxidant and anti inflammatory properties of yttrium oxide nanoparticles: new insights into assuaging diabetes. Curr Diabetes Rev. 2021;17(4):496–502.
Pratsinis A, Kelesidis GA, Zuercher S, Krumeich F, Bolisetty S, Mezzenga R, et al. Enzyme-mimetic antioxidant luminescent nanoparticles for extremely delicate hydrogen peroxide biosensing. ACS Nano. 2017;11(12):12210–8.
Thu Huong T, Thi Phuong H, Thi Vinh L, Thi Khuyen H, Thi Thao D, Dac Tuyen L, et al. Upconversion NaYF4: Yb3+/Er3+ @silica-TPGS bio-nano complexes: synthesis, characterization, and in vitro checks for labeling most cancers cells. J Phys Chem B. 2021;125(34):9768–75.
Tune X, Shang P, Solar Z, Lu M, You G, Yan S, et al. Therapeutic impact of yttrium oxide nanoparticles for the remedy of fulminant hepatic failure. Nanomed. 2019;14(19):2519–33.
Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and views of use for remedy of neurodegenerative ailments. J Nanobiotechnology. 2018;16(1):87.
Lin J, Cai R, Solar B, Dong J, Zhao Y, Miao Q, et al. Gd@C82 (OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells by JNK/STAT3 signaling pathway. J Mater Chem B. 2018;6(36):5802–11.
Augustine R, Dalvi YB, Yadu Nath VK, Varghese R, Raghuveeran V, Hasan A, et al. Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering purposes. Mater Sci Eng C. 2019;103: 109801.
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: promising biomedical purposes. J Controll Launch. 2021;338:164–89.
Wei H, Wang E. Nanomaterials with enzyme-like traits (nanozymes): next-generation synthetic enzymes. Chem Soc Rev. 2013;42(14):6060.
Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic exercise. Chem Commun. 2010;46(16):2736.
Li Ok, Shen Q, Xie Y, You M, Huang L, Zheng X. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic exercise of mesenchymal stem cell and macrophage polarization. J Biomater Appl. 2017;31(7):1062–76.
Mellado-Vázquez R, García-Hernández M, López-Marure A, López-Camacho P, De Jesús M-R, Beltrán-Conde H. Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123. Supplies. 2014;7(9):6768–78.
Olvera Salazar A, García Hernández M, López Camacho PY, López Marure A, Reyes De La Torre AI, Morales Ramírez ÁDJ, et al. Affect of Eu3+ doping content material on antioxidant properties of Lu2O3 sol-gel derived nanoparticles. Mater Sci Eng C. 2016;69:850–5.
Hu W, Yie KHR, Liu C, Zhu J, Huang Z, Zhu B, et al. Enhancing the valence self-reversible conversion of cerium nanoparticles on titanium implants by lanthanum doping to reinforce ROS elimination and osteogenesis. Dent Mater. 2022;38(8):1362–75.
Basuthakur P, Roy A, Patra CR, Chakravarty S. Therapeutic potentials of terbium hydroxide nanorods for amelioration of hypoxia-reperfusion harm in cardiomyocytes. Biomater Adv. 2023;153: 213531.
Yu Y, Zhao S, Gu D, Zhu B, Liu H, Wu W, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS–NFκB pathway. Nanoscale. 2022;14(7):2628–37.
Sadowska JM, Ginebra MP. Irritation and biomaterials: position of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8(41):9404–27.
Newman H, Shih YV, Varghese S. Decision of irritation in bone regeneration: from understandings to therapeutic purposes. Biomaterials. 2021;277: 121114.
Zheng Ok, Torre E, Bari A, Taccardi N, Cassinelli C, Morra M, et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic actions. Mater Immediately Bio. 2020;5: 100041.
Hanana H, Turcotte P, Dubé M, Gagnon C, Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after persistent publicity. Ecotoxicol Environ Saf. 2018;165:662–70.
Costantino MD, Schuster A, Helmholz H, Meyer-Rachner A, Willumeit-Römer R, Luthringer-Feyerabend BJC. Inflammatory response to magnesium-based biodegradable implant supplies. Acta Biomater. 2020;101:598–608.
Li YR, Zhu H. Nanoceria potently scale back superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages. Mol Cell Biochem. 2021;476(12):4461–70.
Kim J, Kim HY, Tune SY, Go SH, Sohn HS, Baik S, et al. Synergistic oxygen era and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis remedy. ACS Nano. 2019;13(3):3206–17.
Bloomer SA, Moyer ED, Brown KE, Kregel KC. Getting old leads to accumulation of M1 and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochem Cell Biol. 2020;153(1):37–48.
Lachaud C, Da Silva D, Amelot N, Béziat C, Brière C, Cotelle V, et al. Dihydrosphingosine-induced programmed cell loss of life in tobacco BY-2 cells is impartial of H2O2 manufacturing. Mol Plant. 2011;4(2):310–8.
Li R, Wan L, Zhang X, Liu W, Rong M, Li X, et al. Impact of a neodymium-doped yttrium aluminium garnet laser on the physicochemical properties of contaminated titanium surfaces and macrophage polarization. J Periodontal Res. 2022;57(3):533–44.
Giannelli M, Bani D, Tani A, Pini A, Margheri M, Zecchi-Orlandini S, et al. In vitro analysis of the results of low-intensity Nd: YAG laser irradiation on the inflammatory response elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol. 2009;80(6):977–84.
Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small Weinh Bergstr Ger. 2009;5(24):2848–56.
Li X, Qi M, Solar X, Weir MD, Tay FR, Oates TW, et al. Floor remedies on titanium implants by way of nanostructured ceria for antibacterial and anti inflammatory capabilities. Acta Biomater. 2019;94:627–43.
Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, et al. Cerium oxide nanoparticle-induced pulmonary irritation and alveolar macrophage purposeful change in rats. Nanotoxicology. 2011;5(3):312–25.
Pérez S, Rius-Pérez S. Macrophage polarization and reprogramming in acute irritation: a redox perspective. Antioxidants. 2022;11(7):1394.
Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with antibacterial and osteoinductive properties to restore contaminated bone defects. Int J Mol Sci. 2016;17(3):334.
Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they will supply and what they can not. J Bone Joint Surg Br. 2007;89(5):574–80.
Agarwal R, García AJ. Biomaterial methods for engineering implants for enhanced osseointegration and bone restore. Adv Drug Deliv Rev. 2015;94:53–62.
Wakabayashi T, Ymamoto A, Kazaana A, Nakano Y, Nojiri Y, Kashiwazaki M. Antibacterial, antifungal and nematicidal actions of uncommon earth ions. Biol Hint Elem Res. 2016;174(2):464–70.
Zhuo M, Ma J, Quan X. Cytotoxicity of functionalized CeO2 nanoparticles in the direction of Escherichia coli and adaptive response of membrane properties. Chemosphere. 2021;281: 130865.
Tang WJ, Zhang JX, Wen ML, Wei Y, Tang TT, Yang TT, et al. Preparation of polyvinyl alcohol/chitosan nanofibrous movies incorporating graphene oxide and lanthanum chloride by electrospinning technique for potential photothermal and chemical synergistic antibacterial purposes in wound dressings. J Mech Behav Biomed Mater. 2023;148:106162.
Wang M, Su Y, Liu Y, Liang Y, Wu S, Zhou N, et al. Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound therapeutic. J Colloid Interface Sci. 2022;608:973–83.
Bassous NJ, Garcia CB, Webster TJ. A research of the chemistries, development mechanisms, and antibacterial properties of cerium- and yttrium-containing nanoparticles. ACS Biomater Sci Eng. 2021;7(5):1787–807.
Li C, Solar Y, Li X, Fan S, Liu Y, Jiang X, et al. Bactericidal results and accelerated wound therapeutic utilizing Tb4O7 nanoparticles with intrinsic oxidase-like exercise. J Nanobiotechnology. 2019;17(1):54.
Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, et al. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: Dysprosium-induced variation in properties, in vitro chemo-photothermal conduct, and antibacterial exercise. Int J Pharm. 2023;643: 123282.
Jiang X, Yang L, Liu P, Li X, Shen J. The photocatalytic and antibacterial actions of neodymium and iodine doped TiO2 nanoparticles. Colloids Surf B Biointerfaces. 2010;79(1):69–74.
Aggarwal D, Kumar V, Sharma S. Impact of uncommon earth oxide microparticles on mechanical, corrosion, antibacterial, and hemolytic conduct of Mg-Hydroxyapatite composite for orthopedic purposes: a preliminary in-vitro research. J Biomed Mater Res B Appl Biomater. 2023;111(6):1232–46.
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman Ok, Noroozifar M. Mother or father and nano-encapsulated ytterbium (iii) advanced towards binding with organic macromolecules, in vitro cytotoxicity, cleavage and antimicrobial exercise research. RSC Adv. 2020;10(39):23002–15.
Asadpour S, Aramesh-Boroujeni Z, Jahani S. In vitro anticancer exercise of guardian and nano-encapsulated samarium (iii) advanced in the direction of antimicrobial exercise research and FS-DNA/BSA binding affinity. RSC Adv. 2020;10(53):31979–90.
Jahani S, Noroozifar M, Khorasani-Motlagh M, Torkzadeh-Mahani M, Adeli-Sardou M. In vitro cytotoxicity research of guardian and nanoencapsulated Holmium-2,9-dimethyl-1,10-phenanthroline advanced towards fish-salmon DNA-binding properties and antibacterial exercise. J Biomol Struct Dyn. 2019;37(17):4437–49.
Morais DS, Coelho J, Ferraz MP, Gomes PS, Fernandes MH, Hussain NS, et al. Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic efficiency and antibacterial properties for bone tissue regeneration. J Mater Chem B. 2014;2(35):5872–81.
Ivanova E, Crawford R. Antibacterial surfaces. Cham: Springer Worldwide Publishing; 2015. https://doi.org/10.1007/978-3-319-18594-1.
Peng L, Yi L, Zhexue L, Juncheng Z, Jiaxin D, Daiwen P, et al. Research on organic impact of La 3+ on Escherichia coli by atomic pressure microscopy. J Inorg Biochem. 2004;98(1):68–72.
Koch AL. The pH within the neighborhood of membranes producing a protonmotive pressure. J Theor Biol. 1986;120(1):73–84.
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial exercise of silver nanoparticles. Nano Lett. 2012;12(8):4271–5.
Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like exercise of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed. 2009;48(13):2308–12.
You G, Xu Y, Wang P, Wang C, Chen J, Hou J, et al. Deciphering the results of CeO2 nanoparticles on Escherichia coli within the presence of ferrous and sulfide ions: physicochemical transformation-induced toxicity and cleansing mechanisms. J Hazard Mater. 2021;413: 125300.
Liu H, Jin Y, Ge Ok, Jia G, Li Z, Yang X, et al. Europium-doped Gd2O3 nanotubes enhance bone mineral density in vivo and promote mineralization in vitro. ACS Appl Mater Interfaces. 2017;9(7):5784–92.
Li J, Kang F, Gong X, Bai Y, Dai J, Zhao C, et al. Ceria nanoparticles improve endochondral ossification–primarily based critical-sized bone defect regeneration by selling the hypertrophic differentiation of BMSCs by way of DHX15 activation. FASEB J. 2019;33(5):6378–89.
Jiang X, Xiu J, Shen F, Jin S, Solar W. Repairing of subchondral defect and articular cartilage of knee joint of rabbit by gadolinium containing bio-nanocomposites. J Biomed Nanotechnol. 2021;17(8):1584–97.
Li F, Wang M, Pi G, Lei B. Europium doped monodispersed bioactive glass nanoparticles regulate the osteogenic differentiation of human marrow mesenchymal stem cells. J Biomed Nanotechnol. 2018;14(4):756–64.
Marycz Ok, Smieszek A, Targonska S, Walsh SA, Szustakiewicz Ok, Wiglusz RJ. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium (III) ions (nHAp/PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics. Mater Sci Eng C. 2020;110: 110634.
Solar Y, Solar X, Li X, Li W, Li C, Zhou Y, et al. A flexible nanocomposite primarily based on nanoceria for antibacterial enhancement and safety from aPDT-aggravated irritation by way of modulation of macrophage polarization. Biomaterials. 2021;268: 120614.
SenGupta S, Mother or father CA, Bear JE. The rules of directed cell migration. Nat Rev Mol Cell Biol. 2021;22(8):529–47.
Seetharaman S, Etienne-Manneville S. Cytoskeletal crosstalk in cell migration. Developments Cell Biol. 2020;30(9):720–35.
Duan B, Niu H, Zhang W, Ma Y, Yuan Y, Liu C. Microporous density-mediated response of MSCs on 3D trimodal macro/micro/nano-porous scaffolds by way of fibronectin/integrin and FAK/MAPK signaling pathways. J Mater Chem B. 2017;5(19):3586–99.
Ogino Y, Liang R, Mendonça DBS, Mendonça G, Nagasawa M, Koyano Ok, et al. RhoA-mediated capabilities in C3H10T1/2 osteoprogenitors are substrate topography dependent. J Cell Physiol. 2016;231(3):568–75.
Nagayama Ok, Hanzawa T. Cell type-specific orientation and migration responses for a microgrooved floor with shallow grooves. Biomed Mater Eng. 2022;33(5):393–406.
Hu Y, Du Y, Jiang H, Jiang GS. Cerium promotes bone marrow stromal cells migration and osteogenic differentiation by way of Smad1/5/8 signaling pathway. Int J Clin Exp Pathol. 2014;7(8):5369–78.
Hwang HD, Lee JT, Koh JT, Jung HM, Lee HJ, Kwon TG. Sequential remedy with SDF-1 and BMP-2 potentiates bone formation in calvarial defects. Tissue Eng Half A. 2015;21(13–14):2125–35.
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Organic capabilities of mesenchymal stem cells and scientific implications. Cell Mol Life Sci. 2019;76(17):3323–48.
Lu B, Zhu DY, Yin JH, Xu H, Zhang CQ, Ke QF, et al. Incorporation of cerium oxide in hole mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication. 2019;11(2): 025012.
Huang J, Lv Z, Wang Y, Wang Z, Gao T, Zhang N, et al. In Vivo MRI and X-Ray bifunctional imaging of polymeric composite supplemented with GdPO4 H2O nanobundles for tracing bone implant and bone regeneration. Adv Healthc Mater. 2016;5(17):2182–90.
Zeng H, Li X, Xie F, Teng L, Chen H. Dextran-coated fluorapatite nanorods doped with lanthanides in labelling and directing osteogenic differentiation of bone marrow mesenchymal stem cells. J Mater Chem B. 2014;2(23):3609–17.
Tamama Ok, Sen CK, Wells A. Differentiation of bone marrow mesenchymal stem cells into the graceful muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev. 2008;17(5):897–908.
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal growth, and bone formation, homeostasis and illness. Bone Res. 2016;4(1):16009.
Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS. TGF-β/BMP signaling pathway is concerned in cerium-promoted osteogenic differentiation of mesenchymal stem cells. J Cell Biochem. 2013;114(5):1105–14.
Singh RK, Yoon DS, Mandakhbayar N, Li C, Kurian AG, Lee NH, et al. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating mobile microenvironment: activating integrin/TGF-β co-signaling of MSCs whereas relieving oxidative stress. Biomaterials. 2022;288: 121732.
Liu DD, Ge Ok, Jin Y, Solar J, Wang SX, Yang MS, et al. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells by way of activation of the Smad-dependent TGF-β/BMP signaling pathway. JBIC J Biol Inorg Chem. 2014;19(6):879–91.
Zhou N, Li Q, Lin X, Hu N, Liao JY, Lin LB, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016;366(1):101–11.
Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel unfavourable regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8(1):41.
Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, et al. Lanthanum phosphate/chitosan scaffolds improve cytocompatibility and osteogenic effectivity by way of the Wnt/β-catenin pathway. J Nanobiotechnology. 2018;16(1):98.
Takada I, Kouzmenko AP, Kato S. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5(8):442–7.
Luo J, Zhu S, Tong Y, Zhang Y, Li Y, Cao L, et al. Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway. Biol Hint Elem Res. 2023;201(2):865–73.
Kim CH, Hao J, Ahn HY, Kim SW. Activation of Akt/protein kinase B mediates the protecting results of mechanical stretching towards myocardial ischemia-reperfusion harm. J Vet Sci. 2012;13(3):235.
Liao F, Peng XY, Yang F, Ke QF, Zhu ZH, Guo YP. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration potential. Mater Sci Eng C. 2019;104: 109999.
Ahamad N, Solar Y, Nascimento Da Conceicao V, Xavier Paul Ezhilan CR, Natarajan M, Singh BB. Differential activation of Ca2+ inflow channels modulate stem cell efficiency, their proliferation/viability and tissue regeneration. NPJ Regen Med. 2021;6(1):67.
Wang X, Yuan L, Huang J, Zhang TL, Wang Ok. Lanthanum enhances in vitro osteoblast differentiation by way of pertussis toxin-sensitive gi protein and ERK signaling pathway. J Cell Biochem. 2008;105(5):1307–15.
Carrillo-López N, Fernández-Martín JL, Alvarez-Hernández D, González-Suárez I, Castro-Santos P, Román-García P, et al. Lanthanum prompts calcium-sensing receptor and enhances sensitivity to calcium. Nephrol Dial Transplant. 2010;25(9):2930–7.
Wang P, Hao L, Wang Z, Wang Y, Guo M, Zhang P. Gadolinium-doped BTO-functionalized nanocomposites with enhanced MRI and X-ray twin imaging to simulate {the electrical} properties of bone. ACS Appl Mater Interfaces. 2020;12(44):49464–79.
Clarke B. Regular bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(3):S131–9.
Tsai KS, Kao SY, Wang CY, Wang YJ, Wang JP, Hung SC. Kind I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells by way of activation of ERK and Akt pathways. J Biomed Mater Res A. 2010;94A:673.
Moon Y, Patel M, Um S, Lee HJ, Park S, Park SB, et al. Folic acid pretreatment and its sustained supply for chondrogenic differentiation of MSCs. J Controll Launch. 2022;343:118–30.
Evans CH, Ridella JD. Inhibition, by lanthanides, of impartial proteinases secreted by human, rheumatoid synovium. Eur J Biochem. 1985;151(1):29–32.
Vijayan V, Sreekumar S, Singh F, Govindarajan D, Lakra R, Korrapati PS, et al. Praseodymium–cobaltite-reinforced collagen as biomimetic scaffolds for angiogenesis and stem cell differentiation for cutaneous wound therapeutic. ACS Appl Bio Mater. 2019;2(8):3458–72.
Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA. 2007;104(21):8691–6.
Evans CH, Drouven BJ. The promotion of collagen polymerization by lanthanide and calcium ions. Biochem J. 1983;213(3):751–8.
Inbasekar C, Fathima NN. Collagen stabilization utilizing ionic liquid functionalised cerium oxide nanoparticle. Int J Biol Macromol. 2020;147:24–8.
Yin X, Zhao L, Kang SG, Pan J, Tune Y, Zhang M, et al. Impacts of fullerene derivatives on regulating the construction and meeting of collagen molecules. Nanoscale. 2013;5(16):7341.
Vijayan V, Sreekumar S, Singh F, Srivatsan KV, Lakra R, Sai KP, et al. Nanotized praseodymium oxide collagen 3-D pro-vasculogenic biomatrix for tender tissue engineering. Nanomedicine Nanotechnol Biol Med. 2021;33: 102364.
Li J, Liang J, Wu L, Xu Y, Xiao C, Yang X, et al. CYT387, a JAK-specific inhibitor impedes osteoclast exercise and oophorectomy-induced osteoporosis by way of modulating RANKL and ROS signaling pathways. Entrance Pharmacol. 2022;13: 829862.
Dou C, Li J, He J, Luo F, Yu T, Dai Q, et al. Bone-targeted pH-responsive cerium nanoparticles for anabolic remedy in osteoporosis. Bioact Mater. 2021;6(12):4697–706.
Yuan Ok, Mei J, Shao D, Zhou F, Qiao H, Liang Y, et al. Cerium oxide nanoparticles regulate osteoclast differentiation bidirectionally by modulating the mobile manufacturing of reactive oxygen species. Int J Nanomedicine. 2020;15:6355–72.
Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, et al. The macrophage-osteoclast axis in osteoimmunity and osteo-related ailments. Entrance Immunol. 2021;12: 664871.
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone. 2022;164: 116538.
Kovács B, Vajda E, Nagy EE. Regulatory results and interactions of the Wnt and OPG-RANKL-RANK signaling on the bone-cartilage interface in osteoarthritis. Int J Mol Sci. 2019;20(18):4653.
Choi J, Choi SY, Lee SY, Lee JY, Kim HS, Lee SY, et al. Caffeine enhances osteoclast differentiation and maturation by p38 MAP kinase/Mitf and DC-STAMP/CtsK and TRAP pathway. Cell Sign. 2013;25(5):1222–7.
Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast–osteoclast interactions. Join Tissue Res. 2018;59(2):99–107.
Liu XL, Zhang CJ, Shi JJ, Ke QF, Ge YW, Zhu ZA, et al. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration by way of OPG/RANKL signaling pathway. J Nanobiotechnology. 2023;21(1):259.
Yashima Y, Kaku M, Yamamoto T, Izumino J, Kagawa H, Ikeda Ok, et al. Impact of steady compressive pressure on the expression of RANKL, OPG, and VEGF in osteocytes. Biomed Res. 2020;41(2):91–9.
Wu H, Xu G, Li YP. Atp6v0d2 is a vital part of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J Bone Miner Res. 2009;24(5):871–85.
Maeda H, Kowada T, Kikuta J, Furuya M, Shirazaki M, Mizukami S, et al. Actual-time intravital imaging of pH variation related to osteoclast exercise. Nat Chem Biol. 2016;12(8):579–85.
Zhang Ok, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62.
Madreiter-Sokolowski CT, Thomas C, Ristow M. Interrelation between ROS and Ca2+ in ageing and age-related ailments. Redox Biol. 2020;36: 101678.
Palumbo CT, Zivkovic I, Scopelliti R, Mazzanti M. Molecular advanced of Tb within the +4 oxidation state. J Am Chem Soc. 2019;141(25):9827–31.
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S, Mardani F, et al. Macrophage plasticity, polarization, and performance in well being and illness. J Cell Physiol. 2018;233(9):6425–40.
Wang C, Chen B, Wang W, Zhang X, Hu T, He Y, et al. Strontium launched bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative setting for osteochondral regeneration. Mater Sci Eng C. 2019;103: 109833.
Solar Y, Wan B, Wang R, Zhang B, Luo P, Wang D, et al. Mechanical stimulation on mesenchymal stem cells and surrounding microenvironments in bone regeneration: rules and purposes. Entrance Cell Dev Biol. 2022;10: 808303.
Chen Z, Liu Y, Solar B, Li H, Dong J, Zhang L, et al. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage by TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small. 2014;10(12):2362–72.
Shi M, Xia L, Chen Z, Lv F, Zhu H, Wei F, et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials. 2017;144:176–87.
Yan J, Feng G, Yang Y, Zhao X, Ma L, Guo H, et al. Nintedanib ameliorates osteoarthritis in mice by inhibiting synovial irritation and fibrosis brought on by M1 polarization of synovial macrophages by way of the MAPK/PI3K-AKT pathway. FASEB J. 2023;37(10):23177.
Zhang J, Wu Q, Yin C, Jia X, Zhao Z, Zhang X, et al. Sustained calcium ion launch from bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction. J Leukoc Biol. 2021;110(3):485–96.
Liu W, Zhang G, Wu J, Zhang Y, Liu J, Luo H, et al. Insights into the angiogenic results of nanomaterials: mechanisms concerned and potential purposes. J Nanobiotechnology. 2020;18(1):9.
Rnjak-Kovacina J, Weiss AS. Rising the pore measurement of electrospun scaffolds. Tissue Eng Half B Rev. 2011;17(5):365–72.
Hansel CS, Crowder SW, Cooper S, Gopal S, da João Pardelha Cruz M, de Martins Oliveira L, et al. Nanoneedle-mediated stimulation of cell mechanotransduction equipment. ACS Nano. 2019;13(3):2913–26.
Fuhrmann DC, Brüne B. Mitochondrial composition and performance below the management of hypoxia. Redox Biol. 2017;12:208–15.
Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TXT, et al. The induction of angiogenesis by cerium oxide nanoparticles by the modulation of oxygen in intracellular environments. Biomaterials. 2012;33(31):7746–55.
Xiang J, Li J, He J, Tang X, Dou C, Cao Z, et al. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells. ACS Appl Mater Interfaces. 2016;8(7):4489–99.
Kim KH, Kim D, Park JY, Jung HJ, Cho YH, Kim HK, et al. NNC 55–0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis by way of suppression of hypoxia-inducible factor-1α sign transduction. J Mol Med. 2015;93(5):499–509.
Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF-1α expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008;217(3):674–85.
Oda S, Oda T, Takabuchi S, Nishi Ok, Wakamatsu T, Tanaka T, et al. The calcium channel blocker cilnidipine selectively suppresses hypoxia-inducible issue 1 exercise in vascular cells. Eur J Pharmacol. 2009;606(1–3):130–6.
Patra CR, Kim JH, Pramanik Ok, d’Uscio LV, Patra S, Pal Ok, et al. Reactive oxygen species pushed angiogenesis by inorganic nanorods. Nano Lett. 2011;11(11):4932–8.
Zhao H, Osborne OJ, Lin S, Ji Z, Damoiseux R, Wang Y, et al. Lanthanide hydroxide nanoparticles induce angiogenesis by way of ROS-sensitive signaling. Small. 2016;12(32):4404–11.
Duraipandy N, Syamala KM. Results of structural distinction in neodymium nanoparticle for therapeutic utility in aberrant angiogenesis. Colloids Surf B Biointerfaces. 2019;181:450–60.
Peng Y, Wu S, Li Y, Crane JL. Kind H blood vessels in bone modeling and reworking. Theranostics. 2020;10(1):426–36.
Zhang D, Ni N, Su Y, Miao H, Tang Z, Ji Y, et al. Concentrating on native osteogenic and ancillary cells by mechanobiologically optimized magnesium scaffolds for orbital bone reconstruction in canines. ACS Appl Mater Interfaces. 2020;12(25):27889–904.
Tuckermann J, Adams RH. The endothelium–bone axis in growth, homeostasis and bone and joint illness. Nat Rev Rheumatol. 2021;17(10):608–20.
Feng Y, Wu J, Lu H, Lao W, Zhan H, Lin L, et al. Cytotoxicity and hemolysis of uncommon earth ions and nanoscale/bulk oxides (La, Gd, and Yb): Interplay with lipid membranes and protein corona formation. Sci Whole Environ. 2023;879: 163259.
Huang S, Kang X, Cheng Z, Ma P, Jia Y, Lin J. Electrospinning preparation and drug supply properties of Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers. J Colloid Interface Sci. 2012;387(1):285–91.
Liu L, Jia W, Zhou Y, Zhou H, Liu M, Li M, et al. Hyaluronic acid oligosaccharide-collagen mineralized product and aligned nanofibers with enhanced vascularization properties in bone tissue engineering. Int J Biol Macromol. 2022;206:277–87.
Zhou G, Gu G, Li Y, Zhang Q, Wang W, Wang S, et al. Results of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization perform of major osteoblasts in vitro. Biol Hint Elem Res. 2013;153(1–3):411–8.
Elias DR, Poloukhtine A, Popik V, Tsourkas A. Impact of ligand density, receptor density, and nanoparticle measurement on cell focusing on. Nanomedicine Nanotechnol Biol Med. 2013;9(2):194–201.
Chen BH, Stephen IB. Varied physicochemical and floor properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol. 2018;38(7):1003–24.
Yuan H, Li J, Bao G, Zhang S. Variable nanoparticle-cell adhesion energy regulates mobile uptake. Phys Rev Lett. 2010;105(13): 138101.
Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, et al. Understanding the interactions between inorganic-based nanomaterials and organic membranes. Adv Drug Deliv Rev. 2021;175: 113820.
Wang X, Zhang Y, Lin C, Zhong W. Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In vitro hydroxyapatite formation and drug supply. Colloids Surf B Biointerfaces. 2017;160:406–15.
Xu W, Wei Ok, Lin Z, Wu T, Li G, Wang L. Storage and launch of uncommon earth components in microsphere-based scaffolds for enhancing osteogenesis. Sci Rep. 2022;12(1):6383.
Cadafalch Gazquez G, Chen H, Veldhuis SA, Solmaz A, Mota C, Boukamp BA, et al. Versatile yttrium-stabilized zirconia nanofibers supply bioactive cues for osteogenic differentiation of human mesenchymal stromal cells. ACS Nano. 2016;10(6):5789–99.
Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Results of nanofibers on mesenchymal stem cells: environmental elements affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ-Sci B. 2020;21(11):871–84.
Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, et al. Stem cell aligned development induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative drugs. Adv Funct Mater. 2010;20(10):1617–24.
Mahapatra C, Singh RK, Lee JH, Jung J, Hyun JK, Kim HW. Nano-shape different cerium oxide nanomaterials rescue human dental stem cells from oxidative insult by intracellular or extracellular actions. Acta Biomater. 2017;50:142–53.
Naganuma T, Traversa E. The impact of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials. 2014;35(15):4441–53.
Hosseini M, Mozafari M. Cerium oxide nanoparticles: current advances in tissue engineering. Supplies. 2020;13(14):3072.
Tong X, Han Y, Zhou R, Jiang W, Zhu L, Li Y, et al. Biodegradable Zn–Dy binary alloys with excessive energy, ductility, cytocompatibility, and antibacterial potential for bone-implant purposes. Acta Biomater. 2023;155:684–702.
Akram IN, Akhtar S, Khadija G, Awais MM, Latif M, Noreen A, et al. Synthesis, characterization, and biocompatibility of lanthanum titanate nanoparticles in albino mice in a sex-specific method. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(6):1089–101.
Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, et al. Cerium oxide and barium sulfate nanoparticle inhalation impacts gene expression in alveolar epithelial cells sort II. J Nanobiotechnology. 2018;16(1):16.
Mauro M, Crosera M, Monai M, Montini T, Fornasiero P, Bovenzi M, et al. Cerium oxide nanoparticles absorption by intact and broken human pores and skin. Molecules. 2019;24(20):3759.
Abbasi S, Rezaei M, Keshavarzi B, Mina M, Ritsema C, Geissen V. Investigation of the 2018 Shiraz mud occasion: potential sources of metals, uncommon earth components, and radionuclides; well being evaluation. Chemosphere. 2021;279: 130533.
da Ferreira Silva M, Fontes MP, Lima MT, Cordeiro SG, Wyatt NL, Lima HN, et al. Human well being threat evaluation and geochemical mobility of uncommon earth components in Amazon soils. Sci Whole Environ. 2022;806:151191.
Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M. Human exposures to uncommon earth components: current data and analysis prospects. Environ Res. 2019;171:493–500.
Gao J, Wang S, Tang G, Wang Z, Wang Y, Wu Q, et al. Irritation and accompanied disrupted hematopoiesis in grownup mouse induced by uncommon earth component nanoparticles. Sci Whole Environ. 2022;831: 155416.
Cao B, Wu J, Xu C, Chen Y, Xie Q, Ouyang L, et al. The buildup and metabolism traits of uncommon earth components in Sprague-Dawley rats. Int J Environ Res Public Well being. 2020;17(4):1399.
Alarifi S, Ali H, Alkahtani S, Alessia MS. Regulation of apoptosis by bcl-2/bax proteins expression and DNA harm by nano-sized gadolinium oxide. Int J Nanomedicine. 2017;12:4541–51.
Lin C, Liu G, Huang Y, Liu S, Tang B. Uncommon-earth nanoparticles induce despair, anxiety-like conduct, and reminiscence impairment in mice. Meals Chem Toxicol. 2021;156: 112442.
Hou F, Huang J, Qing F, Guo T, Ouyang S, Xie L, et al. The rare-earth yttrium induces cell apoptosis and autophagy within the male reproductive system by ROS-Ca2+-CamkII/Ampk axis. Ecotoxicol Environ Saf. 2023;263: 115262.
Wang C, He M, Chen B, Hu B. Research on cytotoxicity, mobile uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. Ecotoxicol Environ Saf. 2020;203: 110951.
Ji Z, Wang X, Zhang H, Lin S, Meng H, Solar B, et al. Designed synthesis of CeO2 nanorods and nanowires for learning toxicological results of excessive facet ratio nanomaterials. ACS Nano. 2012;6(6):5366–80.
Wu J, Yang J, Liu Q, Wu S, Ma H, Cai Y. Lanthanum induced major neuronal apoptosis by mitochondrial dysfunction modulated by Ca2+ and Bcl-2 household. Biol Hint Elem Res. 2013;152(1):125–34.
Charbgoo F, Ahmad M, Darroudi M. Cerium oxide nanoparticles: inexperienced synthesis and organic purposes. Int J Nanomedicine. 2017;12:1401–13.
Wang L, Ai W, Zhai Y, Li H, Zhou Ok, Chen H. Results of nano-CeO2 with completely different nanocrystal morphologies on cytotoxicity in HepG2 cells. Int J Environ Res Public Well being. 2015;12(9):10806–19.
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Steel-based nanoparticles and their toxicity evaluation. WIREs Nanomed Nanobiotechnol. 2010;2(5):544–68.
Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hoseini S, Baino F, Vatanpour M, et al. Cerium oxide nanoparticles (Nanoceria): hopes in tender tissue engineering. Molecules. 2020;25(19):4559.