Tittl, A. Tunable structural colours on show. Gentle Sci. Appl. 11, 155 (2022).
Sreekanth, Okay. V. et al. Dynamic shade technology with electrically tunable skinny movie optical coatings. Nano Lett. 21, 10070–10075 (2021).
White, T. E. Structural colors mirror particular person high quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).
Burgess, I. B., Lončar, M. & Aizenberg, J. Structural color in colourimetric sensors and indicators. J. Mater. Chem. C 1, 6075–6086 (2013).
Kim, J., bin, Lee, S. Y., Lee, J. M. & Kim, S. H. Designing structural-color patterns composed of colloidal arrays. ACS Appl Mater. Interfaces 11, 14485–14509 (2019).
Hu, X., Zhang, X., Chen, X. & Luo, M. Resolution path to massive space all-TiO2 one-dimensional photonic crystals with excessive reflectivity and completely different structural colours. Nanotechnology 31, 135209 (2020).
Daqiqeh Rezaei, S. et al. Tunable, cost-effective, and scalable structural colours for sensing and shopper merchandise. Adv. Choose. Mater. 7, 1900735 (2019).
Liu, H. et al. Excessive-order photonic cavity modes enabled 3D structural colours. ACS Nano https://doi.org/10.1021/acsnano.2c01999 (2022).
Siegwardt, L. & Gallei, M. Complicated 3D-printed mechanochromic supplies with iridescent structural colours primarily based on core–shell particles. Adv. Funct. Mater. 33, 2213099 (2023).
Demirörs, A. F. et al. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural shade. Nat. Commun. 13, 4397 (2022).
Park, C., Koh, Okay. & Jeong, U. Structural shade portray by rubbing particle powder. Sci. Rep. 5, 8340 (2015).
Hong, Y. et al. All-dielectric excessive saturation structural colours with Si3N4 metasurface. Mod. Phys. Lett. B 34, 28954–28965 (2020).
Yang, J. H. et al. Structural colours enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020).
Do, Y. S. et al. Plasmonic shade filter and its fabrication for large-area purposes. Adv. Choose. Mater. 1, 133–138 (2013).
Hu, Y., Yang, D., Ma, D. & Huang, S. Extraordinarily delicate mechanochromic photonic crystals with broad tuning vary of photonic bandgap and quick responsive velocity for high-resolution multicolor show purposes. Chem. Eng. J. 429, 132342 (2022).
Kaplan, A. F., Xu, T. & Jay Guo, L. Excessive effectivity resonance-based spectrum filters with tunable transmission bandwidth fabricated utilizing nanoimprint lithography. Appl Phys. Lett. 99, 143111 (2011).
Geng, J., Xu, L., Yan, W., Shi, L. & Qiu, M. Excessive-speed laser writing of structural colours for full-color inkless printing. Nat. Commun. 14, 565 (2023).
Miller, B. H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural color in stretchable supplies. Nat. Mater. 21, 1014–1018 (2022).
Das Gupta, T. et al. Self-assembly of nanostructured glass metasurfaces through templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019).
Zheng, X. et al. Angle-dependent structural colours in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint expertise. Beilstein J. Nanotechnol. 10, 1211–1216 (2019).
Li, Z., Dai, Q., Deng, L., Zheng, G. & Li, G. Structural-color nanoprinting with hidden watermarks. Choose. Lett. 46, 480–483 (2021).
Xiao, M. et al. Bio-inspired structural colours produced through self-assembly of artificial melanin nanoparticles. ACS Nano 9, 5454–5460 (2015).
Dong, X. et al. Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite movies with balanced ordered/disordered arrays. Compos. B 229, 109456 (2022).
Fashion, R. W., Tutika, R., Kim, J. Y. & Bartlett, M. D. Stable–liquid composites for mushy multifunctional supplies. Adv. Funct. Mater. 31, 2005804 (2021).
Miranda, I. et al. Properties and purposes of PDMS for biomedical engineering: a overview. J. Funct. Biomater. https://doi.org/10.3390/jfb13010002 (2022).
Zhu, X., Shi, L., Liu, X., Zi, J. & Wang, Z. A mechanically tunable plasmonic construction composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 3, 807–812 (2010).
Millyard, M. G. et al. Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Appl. Phys. Lett. 100, 073101 (2012).
Cataldi, U. et al. Rising gold nanoparticles on a versatile substrate to allow easy mechanical management of their plasmonic coupling. J. Mater. Chem. C 2, 7927–7933 (2014).
Horák, M., Čalkovský, V., Mach, J., Křápek, V. & Šikola, T. Plasmonic properties of particular person gallium nanoparticles. J. Phys. Chem. Lett. 14, 2012–2019 (2023).
Catalán-Gómez, S., Redondo-Cubero, A., Palomares, F. J., Nucciarelli, F. & Pau, J. L. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology 28, 405705 (2017).
Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Extremely stretchable multilayer digital circuits utilizing biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).
Hajalilou, A. et al. Biphasic liquid steel composites for sinter-free printed stretchable electronics. Adv. Mater. Interfaces 9, 2101913 (2022).
Khondoker, M. A. H. & Sameoto, D. Fabrication strategies and purposes of microstructured gallium primarily based liquid steel alloys. Good Mater. Struct. https://doi.org/10.1088/0964-1726/25/9/093001 (2016).
Dickey, M. D. Stretchable and mushy electronics utilizing liquid metals. Adv. Mater. https://doi.org/10.1002/adma.201606425 (2017).
Palleau, E., Reece, S., Desai, S. C., Smith, M. E. & Dickey, M. D. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589–1592 (2013).
Hardy, S. C. The floor stress of liquid gallium. J. Cryst. Development 71, 329–333 (1985).
Limantoro, C. et al. Synthesis of antimicrobial gallium nanoparticles utilizing the new injection technique. ACS Mater. Au https://doi.org/10.1021/acsmaterialsau.2c00078 (2022).
Gao, X., Fan, X. & Zhang, J. Tunable plasmonic gallium nano liquid steel from facile and controllable synthesis. Mater. Horiz. 8, 3315–3323 (2021).
Reineck, P. et al. UV plasmonic properties of colloidal liquid-metal eutectic gallium–indium alloy nanoparticles. Sci. Rep. 9, 1–7 (2019).
Wong, W. S. Y. et al. Adaptive wetting of polydimethylsiloxane. Langmuir 36, 7236–7245 (2020).
Carter, S.-S. D. et al. PDMS leaching and its implications for on-chip research specializing in bone regeneration purposes. Organs-on-a-Chip 2, 100004 (2020).
McGRAW, D. A. A way for figuring out Younger’s modulus of glass at elevated temperatures. J. Am. Ceram. Soc. 35, 22–27 (1952).
Zhao, B., Bonaccurso, E., Auernhammer, G. Okay. & Chen, L. Elasticity-to-capillarity transition in mushy substrate deformation. Nano Lett. 21, 10361–10367 (2021).
Fashion, R. W. & Dufresne, E. R. Static wetting on deformable substrates, from liquids to mushy solids. Delicate Matter 8, 7177–7184 (2012).
Fashion, R. W. et al. Common deformation of soppy substrates close to a contact line and the direct measurement of strong floor stresses. Phys. Rev. Lett. 110, 066103 (2013).
Samy, R. A., Suthanthiraraj, P. P. A., George, D., Iqbal, R. & Sen, A. Okay. Elastocapillarity-based transport of liquids in versatile confinements and over mushy substrates. Microfluid. Nanofluidics https://doi.org/10.1007/s10404-019-2266-2 (2019).
Si, Z. et al. The ultrafast and steady fabrication of a polydimethylsiloxane membrane by ultraviolet-induced polymerization. Angew. Chem. Int. Ed. 58, 17175–17179 (2019).
Jean, P., Douaud, A., LaRochelle, S., Messaddeq, Y. & Shi, W. Templated dewetting for self-assembled ultra-low-loss chalcogenide built-in photonics. Choose. Mater. Categorical 11, 3317–3735 (2021).
Tune, M. et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 18, 71–78 (2023).