[HTML payload içeriği buraya]
29.9 C
Jakarta
Tuesday, November 26, 2024

Revealing the degradation pathways of layered Li-rich oxide cathodes


  • Wang, J. et al. Lithium- and manganese-rich oxide cathode supplies for high-energy lithium ion batteries. Adv. Vitality Mater. 6, 1600906 (2016).

    Article 

    Google Scholar
     

  • Nayak, P. Ok. et al. Overview on challenges and up to date advances within the electrochemical efficiency of excessive capability Li- and Mn-rich cathode supplies for Li-ion batteries. Adv. Vitality Mater. 8, 1702397 (2018).

    Article 

    Google Scholar
     

  • Hy, S., Liu, H., Zhang, M., Qian, D. & Hwang, B. Efficiency and design concerns for lithium extra layered oxide optimistic electrode supplies for lithium ion batteries. Vitality Environ. Sci. 9, 1931–1954 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, W. et al. Li-rich cathodes for rechargeable Li-based batteries: response mechanisms and superior characterization strategies. Vitality Environ. Sci. 13, 4450–4497 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Assat, G. et al. Elementary interaction between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Non-topotactic reactions allow excessive price functionality in Li-rich cathode supplies. Nat. Vitality 6, 706–714 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hong, J. et al. Metallic–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X. et al. Chemical and structural evolutions of Li–Mn-rich layered electrodes at totally different present densities. Vitality Environ. Sci. 15, 4137–4147 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lin, F. et al. Metallic segregation in hierarchically structured cathode supplies for high-energy lithium batteries. Nat. Vitality 1, 15004 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. In situ visualization of state-of-charge heterogeneity inside a LiCoO2 particle that evolves upon biking at totally different charges. ACS Vitality Lett. 2, 1240–1245 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sorrentino, A. et al. Comfortable X-ray transmission microscopy on lithium-rich layered-oxide cathode supplies. Appl. Sci. 11, 2791 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Response inhomogeneity coupling with metallic rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 12, 5370 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shapiro, D. A. et al. Chemical composition mapping with nanometre decision by comfortable X-ray microscopy. Nat. Photonics 8, 765–769 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. S. et al. Three-dimensional localization of nanoscale battery reactions utilizing comfortable X-ray tomography. Nat. Commun. 9, 921 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Quantification of heterogeneous degradation in Li-ion batteries. Adv. Vitality Mater. 9, 1900674 (2019).

    Article 

    Google Scholar
     

  • Zheng, J. et al. Structural and chemical evolution of Li- and Mn-rich layered cathode materials. Chem. Mater. 27, 1381–1390 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Injection of oxygen vacancies within the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Home, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes related to molecular O2 trapped within the bulk. Nat. Vitality 5, 777–785 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Home, R. A. et al. The position of O2 in O-redox cathodes for Li-ion batteries. Nat. Vitality 6, 781–789 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. N. et al. Excessive-rate charging induced intermediate phases and structural modifications of layer-structured cathode for lithium-ion batteries. Adv. Vitality Mater. 6, 1600597 (2016).

    Article 

    Google Scholar
     

  • Sharifi-Asl, S. et al. Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode supplies. Nano Lett. 20, 1208–1217 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, B., Fell, C. R., Chi, M. & Meng, Y. S. Figuring out floor structural modifications in layered Li-excess nickel manganese oxides in excessive voltage lithium ion batteries: a joint experimental and theoretical research. Vitality Environ. Sci. 4, 2223–2233 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, J. et al. Mitigating evolution of lattice oxygen and stabilizing construction of lithium-rich oxides by fabricating floor oxygen defects. Electrochim. Acta 328, 134987 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Csernica, P. M. et al. Persistent and partially cellular oxygen vacancies in Li-rich layered oxides. Nat. Vitality 6, 642–652 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mohanty, D. et al. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272–6280 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Vitality 7, 808–817 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, B. et al. Gasoline–stable interfacial modification of oxygen exercise in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai, Ok. et al. Kinetic sq. scheme in oxygen-redox battery electrodes. Vitality Environ. Sci. 15, 2591–2600 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guttmann, P. et al. Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM. Nat. Photonics 6, 25–29 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Understanding the speed functionality of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode supplies. Adv. Vitality Mater. 4, 1300950 (2014).

    Article 

    Google Scholar
     

  • Li, Q. et al. Enhancing the oxygen redox reversibility of Li-rich battery cathode supplies through Coulombic repulsive interactions technique. Nat. Commun. 13, 1123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N. et al. Unraveling the cationic and anionic redox reactions in a traditional layered oxide cathode. ACS Vitality Lett. 4, 2836–2842 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Solar, T. et al. Comfortable X‑ray ptychography chemical imaging of degradation in a composite surface-reconstructed Li-rich cathode. ACS Nano 15, 1475–1485 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, W. et al. Challenges and up to date advances in excessive capability Li-rich cathode supplies for top power density lithium-ion batteries. Adv. Mater. 33, 2005937 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, W. S. et al. Investigation of the cost compensation mechanism on the electrochemically Li-ion deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 electrode system by mixture of sentimental and onerous X-ray absorption spectroscopy. J. Am. Chem. Soc. 127, 17479–17487 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bessette, S. et al. Nanoscale lithium quantification in LixNiyCowMnzO2 as cathode for rechargeable batteries. Sci. Rep. 8, 17575 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruess, R. et al. Affect of NCM particle cracking on kinetics of lithium-ion batteries with liquid or stable electrolyte. J. Electrochem. Soc. 167, 100532 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, E. et al. Evolution of redox {couples} in Li- and Mn-rich cathode supplies and mitigation of voltage fade by decreasing oxygen launch. Nat. Vitality 3, 690–698 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kikkawa, J. et al. Chemical states of overcharged LiCoO2 particle surfaces and interiors noticed utilizing electron energy-loss spectroscopy. J. Phys. Chem. C 119, 15823–15830 (2015).

    Article 
    CAS 

    Google Scholar
     

  • He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dai, Ok. et al. Excessive reversibility of lattice oxygen redox quantified by direct bulk probes of each anionic and cationic redox reactions excessive reversibility of lattice oxygen redox quantified by direct bulk probes of each anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Operando lithium dynamics within the Li-rich layered oxide cathode materials through neutron diffraction. Adv. Vitality Mater. 6, 1502143 (2016).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles