Appenzeller, J., Lin, Y. M., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004).
Perrin, M. L., Burzuri, E. & van der Zant, H. S. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).
Yuan, T. et al. CMOS scaling into the nanometer regime. Proc. IEEE 85, 486–504 (1997).
Heinrich, A. J. et al. Quantum-coherent nanoscience. Nat. Nanotechnol. 16, 1318–1329 (2021).
Aradhya, S. V. & Venkataraman, L. Single-molecule junctions past digital transport. Nat. Nanotechnol. 8, 399–410 (2013).
Li, Y., Mol, J. A., Benjamin, S. C. & Briggs, G. A. Interference-based molecular transistors. Sci. Rep. 6, 33686 (2016).
Liu, J., Huang, X., Wang, F. & Hong, W. Quantum interference results in cost transport by single-molecule junctions: detection, manipulation, and software. Acc. Chem. Res. 52, 151–160 (2019).
Andrews, D. Q., Solomon, G. C., Van Duyne, R. P. & Ratner, M. A. Single molecule electronics: rising dynamic vary and switching velocity utilizing cross-conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008).
Bai, J. et al. Anti-resonance options of damaging quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).
Li, Y. et al. Gate controlling of quantum interference and direct commentary of anti-resonances in single molecule cost transport. Nat. Mater. 18, 357–363 (2019).
Lambert, C. J. Fundamental ideas of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 875–888 (2015).
Hong, W. et al. An MCBJ case examine: the affect of pi-conjugation on the single-molecule conductance at a strong/liquid interface. Beilstein J. Nanotechnol. 2, 699–713 (2011).
Guedon, C. M. et al. Statement of quantum interference in molecular cost transport. Nat. Nanotechnol. 7, 305–309 (2012).
Fagaly, R. L. Superconducting quantum interference gadget devices and purposes. Rev. Sci. Instrum. 77, 101101 (2006).
Chen, Z. et al. Section-coherent cost transport by a porphyrin nanoribbon. J. Am. Chem. Soc. 145, 15265–15274 (2023).
Carrascal, D., García-Suárez, V. M. & Ferrer, J. Affect of edge form on the functionalities of graphene-based single-molecule electronics units. Phys. Rev. B 85, 195434 (2012).
Gehring, P. et al. Distinguishing lead and molecule states in graphene-based single-electron transistors. ACS Nano 11, 5325–5331 (2017).
El Abbassi, M. et al. From electroburning to sublimation: substrate and environmental results within the electrical breakdown means of monolayer graphene. Nanoscale 9, 17312–17317 (2017).
Lambert, C. J. Quantum Transport in Nanostructures and Molecules: An Introduction to Molecular Electronics (IOP, 2021).
Smidstrup, S. et al. QuantumATK: an built-in platform of digital and atomic-scale modelling instruments. J. Phys. Condens. Matter 32, 015901 (2020).
Yoshizawa, Ok. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).
Markussen, T., Stadler, R. & Thygesen, Ok. S. The relation between construction and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).
Garcia-Suarez, V. M. et al. Spin signatures within the electrical response of graphene nanogaps. Nanoscale 10, 18169–18177 (2018).
Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring native currents in molecular junctions. Nat. Chem. 2, 223–228 (2010).
Limburg, B. et al. Cost-state task of nanoscale single-electron transistors from their current-voltage traits. Nanoscale 11, 14820–14827 (2019).
Track, S. M. & Cho, B. J. Investigation of interplay between graphene and dielectrics. Nanotechnology 21, 335706 (2010).
Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).
Moth-Poulsen, Ok. & Bjornholm, T. Molecular electronics with single molecules in solid-state units. Nat. Nanotechnol. 4, 551–556 (2009).
Fried, J. P. et al. Massive amplitude cost noise and random telegraph fluctuations in room-temperature graphene single-electron transistors. Nanoscale 12, 871–876 (2020).
Balandin, A. A. Low-frequency 1/f noise in graphene units. Nat. Nanotechnol. 8, 549–555 (2013).
Pósa, L. et al. Noise diagnostics of graphene interconnects for atomic-scale electronics. npj 2D Mater. Appl. 5, 57 (2021).
Hartle, R., Butzin, M., Rubio-Pons, O. & Thoss, M. Quantum interference and decoherence in single-molecule junctions: how vibrations induce electrical present. Phys. Rev. Lett. 107, 046802 (2011).
Sze, S. M., Li, Y. & Ng, Ok. Ok. Physics of Semiconductor Gadgets (Wiley, 2021).
Garner, M. H. et al. Complete suppression of single-molecule conductance utilizing damaging sigma-interference. Nature 558, 415–419 (2018).
Jia, X. et al. Managed formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009).
Zhang, J. et al. Contacting particular person graphene nanoribbons utilizing carbon nanotube electrodes. Nat. Electron. 6, 572–581 (2023).
Niu, W. et al. Exceptionally clear single-electron transistors from options of molecular graphene nanoribbons. Nat. Mater. 22, 180–185 (2023).
Lau, C. S., Mol, J. A., Warner, J. H. & Briggs, G. A. Nanoscale management of graphene electrodes. Phys. Chem. Chem. Phys. 16, 20398–20401 (2014).
Prins, F. et al. Room-temperature gating of molecular junctions utilizing few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).
Thomas, J. O. et al. Understanding resonant cost transport by weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).
Limburg, B. et al. Anchor teams for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 28, 1803629 (2018).
Xu, Q. et al. Single electron transistor with single fragrant ring molecule covalently related to graphene nanogaps. Nano Lett. 17, 5335–5341 (2017).
Cao, Y. et al. Constructing high-throughput molecular junctions utilizing indented graphene level contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).
Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).
Gaussian 16 Rev. C.01 (Guassian, Inc., 2016).
Soler, J. M. et al. The SIESTA methodology for ab initio order-N supplies simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).
Ferrer, J. et al. GOLLUM: a next-generation simulation device for electron, thermal and spin transport. New J. Phys. 16, 093029 (2014).
Brooke, R. J. et al. Single-molecule electrochemical transistor using a nickel-pyridyl spinterface. Nano Lett. 15, 275–280 (2015).
Darwish, N. et al. Statement of electrochemically managed quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).
Jia, C. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 4, eaat8237 (2018).
Diez-Perez, I. et al. Gate-controlled electron transport in coronenes as a bottom-up method in the direction of graphene transistors. Nat. Commun. 1, 31 (2010).
Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).
Franklin, A. D. & Chen, Z. Size scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010).
Weitz, R. T. et al. Excessive-performance carbon nanotube subject impact transistors with a skinny gate dielectric primarily based on a self-assembled monolayer. Nano Lett. 7, 22–27 (2007).
Lin, Y. M., Appenzeller, J., Knoch, J. & Avouris, P. Excessive-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4, 481–489 (2005).