[HTML payload içeriği buraya]
27.4 C
Jakarta
Monday, November 25, 2024

Quantum interference enhances the efficiency of single-molecule transistors


  • Appenzeller, J., Lin, Y. M., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrin, M. L., Burzuri, E. & van der Zant, H. S. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, T. et al. CMOS scaling into the nanometer regime. Proc. IEEE 85, 486–504 (1997).

    Article 

    Google Scholar
     

  • Heinrich, A. J. et al. Quantum-coherent nanoscience. Nat. Nanotechnol. 16, 1318–1329 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aradhya, S. V. & Venkataraman, L. Single-molecule junctions past digital transport. Nat. Nanotechnol. 8, 399–410 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Mol, J. A., Benjamin, S. C. & Briggs, G. A. Interference-based molecular transistors. Sci. Rep. 6, 33686 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Huang, X., Wang, F. & Hong, W. Quantum interference results in cost transport by single-molecule junctions: detection, manipulation, and software. Acc. Chem. Res. 52, 151–160 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, D. Q., Solomon, G. C., Van Duyne, R. P. & Ratner, M. A. Single molecule electronics: rising dynamic vary and switching velocity utilizing cross-conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, J. et al. Anti-resonance options of damaging quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Gate controlling of quantum interference and direct commentary of anti-resonances in single molecule cost transport. Nat. Mater. 18, 357–363 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambert, C. J. Fundamental ideas of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 44, 875–888 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, W. et al. An MCBJ case examine: the affect of pi-conjugation on the single-molecule conductance at a strong/liquid interface. Beilstein J. Nanotechnol. 2, 699–713 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guedon, C. M. et al. Statement of quantum interference in molecular cost transport. Nat. Nanotechnol. 7, 305–309 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fagaly, R. L. Superconducting quantum interference gadget devices and purposes. Rev. Sci. Instrum. 77, 101101 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Section-coherent cost transport by a porphyrin nanoribbon. J. Am. Chem. Soc. 145, 15265–15274 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrascal, D., García-Suárez, V. M. & Ferrer, J. Affect of edge form on the functionalities of graphene-based single-molecule electronics units. Phys. Rev. B 85, 195434 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gehring, P. et al. Distinguishing lead and molecule states in graphene-based single-electron transistors. ACS Nano 11, 5325–5331 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Abbassi, M. et al. From electroburning to sublimation: substrate and environmental results within the electrical breakdown means of monolayer graphene. Nanoscale 9, 17312–17317 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambert, C. J. Quantum Transport in Nanostructures and Molecules: An Introduction to Molecular Electronics (IOP, 2021).

  • Smidstrup, S. et al. QuantumATK: an built-in platform of digital and atomic-scale modelling instruments. J. Phys. Condens. Matter 32, 015901 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshizawa, Ok. An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markussen, T., Stadler, R. & Thygesen, Ok. S. The relation between construction and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Suarez, V. M. et al. Spin signatures within the electrical response of graphene nanogaps. Nanoscale 10, 18169–18177 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring native currents in molecular junctions. Nat. Chem. 2, 223–228 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Limburg, B. et al. Cost-state task of nanoscale single-electron transistors from their current-voltage traits. Nanoscale 11, 14820–14827 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Track, S. M. & Cho, B. J. Investigation of interplay between graphene and dielectrics. Nanotechnology 21, 335706 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article 

    Google Scholar
     

  • Moth-Poulsen, Ok. & Bjornholm, T. Molecular electronics with single molecules in solid-state units. Nat. Nanotechnol. 4, 551–556 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fried, J. P. et al. Massive amplitude cost noise and random telegraph fluctuations in room-temperature graphene single-electron transistors. Nanoscale 12, 871–876 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balandin, A. A. Low-frequency 1/f noise in graphene units. Nat. Nanotechnol. 8, 549–555 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pósa, L. et al. Noise diagnostics of graphene interconnects for atomic-scale electronics. npj 2D Mater. Appl. 5, 57 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hartle, R., Butzin, M., Rubio-Pons, O. & Thoss, M. Quantum interference and decoherence in single-molecule junctions: how vibrations induce electrical present. Phys. Rev. Lett. 107, 046802 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sze, S. M., Li, Y. & Ng, Ok. Ok. Physics of Semiconductor Gadgets (Wiley, 2021).

  • Garner, M. H. et al. Complete suppression of single-molecule conductance utilizing damaging sigma-interference. Nature 558, 415–419 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, X. et al. Managed formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Contacting particular person graphene nanoribbons utilizing carbon nanotube electrodes. Nat. Electron. 6, 572–581 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, W. et al. Exceptionally clear single-electron transistors from options of molecular graphene nanoribbons. Nat. Mater. 22, 180–185 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, C. S., Mol, J. A., Warner, J. H. & Briggs, G. A. Nanoscale management of graphene electrodes. Phys. Chem. Chem. Phys. 16, 20398–20401 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prins, F. et al. Room-temperature gating of molecular junctions utilizing few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, J. O. et al. Understanding resonant cost transport by weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limburg, B. et al. Anchor teams for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 28, 1803629 (2018).

    Article 

    Google Scholar
     

  • Xu, Q. et al. Single electron transistor with single fragrant ring molecule covalently related to graphene nanogaps. Nano Lett. 17, 5335–5341 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Constructing high-throughput molecular junctions utilizing indented graphene level contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaussian 16 Rev. C.01 (Guassian, Inc., 2016).

  • Soler, J. M. et al. The SIESTA methodology for ab initio order-N supplies simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferrer, J. et al. GOLLUM: a next-generation simulation device for electron, thermal and spin transport. New J. Phys. 16, 093029 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Brooke, R. J. et al. Single-molecule electrochemical transistor using a nickel-pyridyl spinterface. Nano Lett. 15, 275–280 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Darwish, N. et al. Statement of electrochemically managed quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jia, C. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 4, eaat8237 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez-Perez, I. et al. Gate-controlled electron transport in coronenes as a bottom-up method in the direction of graphene transistors. Nat. Commun. 1, 31 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, A. D. & Chen, Z. Size scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weitz, R. T. et al. Excessive-performance carbon nanotube subject impact transistors with a skinny gate dielectric primarily based on a self-assembled monolayer. Nano Lett. 7, 22–27 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. M., Appenzeller, J., Knoch, J. & Avouris, P. Excessive-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4, 481–489 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles