Greenough, L. et al. Adapting capillary gel electrophoresis as a delicate, high-throughput technique to speed up characterization of nucleic acid metabolic enzymes. Nucleic Acids Res. 44, e15 (2016).
Farag, N. et al. Folding-upon-repair DNA nanoswitches for monitoring the exercise of DNA restore enzymes. Angew. Chem. 133, 7359–7365 (2021).
Luo, X. & Hsing, I.-M. Immobilization-free electrochemical DNA polymerase assay. Electroanalysis 23, 923–926 (2011).
Boehr, D. D., Nussinov, R. & Wright, P. E. The function of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).
Henzler-Wildman, Okay. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).
Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The significance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).
Rotman, B. Measurement of exercise of single molecules of β-d-galactosidase. Proc. Natl Acad. Sci. USA 47, 1981–1991 (1961).
Vogelstein, B. & Kinzler, Okay. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).
Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers enable single molecule enzymology. Nat. Biotechnol. 23, 361–365 (2005).
Ono, T., Ichiki, T. & Noji, H. Digital enzyme assay utilizing attoliter droplet array. Analyst 143, 4923–4929 (2018).
Guan, Z. et al. A extremely parallel microfluidic droplet technique enabling single-molecule counting for digital enzyme detection. Biomicrofluidics 8, 014110 (2014).
Rojek, M. J. & Walt, D. R. Observing single enzyme molecules interconvert between exercise states upon heating. PLoS One 9, e86224 (2014).
Rissin, D. M. & Walt, D. R. Digital focus readout of single enzyme molecules utilizing femtoliter arrays and Poisson statistics. Nano Lett. 6, 520–523 (2006).
Liebherr, R. B. et al. Three-in-one enzyme assay primarily based on single molecule detection in femtoliter arrays. Anal. Bioanal. Chem. 407, 7443–7452 (2015).
Obayashi, Y., Iino, R. & Noji, H. A single-molecule digital enzyme assay utilizing alkaline phosphatase with a cumarin-based fluorogenic substrate. Analyst 140, 5065–5073 (2015).
Gorris, H. H., Rissin, D. M. & Walt, D. R. Stochastic inhibitor launch and binding from single-enzyme molecules. Proc. Natl Acad. Sci. USA 104, 17680–17685 (2007).
English, B. P. et al. Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited. Nat. Chem. Biol. 2, 87–94 (2006).
Hsin, T.-M. & Yeung, E. S. Single-molecule reactions in liposomes. Angew. Chem. Int. Ed. 46, 8032–8035 (2007).
Ueno, H., Kato, M., Minagawa, Y., Hirose, Y. & Noji, H. Elucidation and management of high and low lively populations of alkaline phosphatase molecules for quantitative digital bioassay. Protein Sci. 30, 1628–1639 (2021).
Jiang, Y., Li, X. & Walt, D. R. Single-molecule evaluation determines isozymes of human alkaline phosphatase in serum. Angew. Chem. Int. Ed. 59, 18010–18015 (2020).
Craig, D. B., Arriaga, E. A., Wong, J. C. Y., Lu, H. & Dovichi, N. J. Research on Single alkaline phosphatase molecules: response price and activation power of a response catalyzed by a single molecule and the impact of thermal denaturation—the demise of an enzyme. J. Am. Chem. Soc. 118, 5245–5253 (1996).
Sakuma, M. et al. Genetic perturbation alters purposeful substates in alkaline phosphatase. J. Am. Chem. Soc. 145, 2806–2814 (2023).
Gorris, H. H. & Walt, D. R. Mechanistic elements of horseradish peroxidase elucidated via single-molecule research. J. Am. Chem. Soc. 131, 6277–6282 (2009).
Ehrl, B. N., Liebherr, R. B. & Gorris, H. H. Single molecule kinetics of horseradish peroxidase uncovered in massive arrays of femtoliter-sized fused silica chambers. Analyst 138, 4260–4265 (2013).
Comellas-Aragonès, M. et al. A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2, 635–639 (2007).
Liebherr, R. B., Renner, M. & Gorris, H. H. A single molecule perspective on the purposeful range of in vitro developed β-glucuronidase. J. Am. Chem. Soc. 136, 5949–5955 (2014).
Jiang, Y. et al. Single-molecule mechanistic examine of enzyme hysteresis. ACS Cent. Sci. 5, 1691–1698 (2019).
Watanabe, R., Sakuragi, T., Noji, H. & Nagata, S. Single-molecule evaluation of phospholipid scrambling by TMEM16F. Biophys. J. 114, 558a (2018).
Tan, W. & Yeung, E. S. Monitoring the reactions of single enzyme molecules and single metallic ions. Anal. Chem. 69, 4242–4248 (1997).
Sakakihara, S., Araki, S., Iino, R. & Noji, H. A single-molecule enzymatic assay in a immediately accessible femtoliter droplet array. Lab Chip 10, 3355–3362 (2010).
Watanabe, R. et al. Arrayed lipid bilayer chambers enable single-molecule evaluation of membrane transporter exercise. Nat. Commun. 5, 4519 (2014).
Ueno, H., Sano, M., Hara, M. & Noji, H. Digital cascade assays for ADP- or ATP-producing enzymes utilizing a femtoliter reactor array machine. ACS Sens. 8, 3400–3407 (2023).
Noji, H., Minagawa, Y. & Ueno, H. Enzyme-based digital bioassay know-how—key methods and future views. Lab Chip 22, 3092–3109 (2022).
Cox, Okay. J., Subramanian, H. Okay. Okay., Samaniego, C. C., Franco, E. & Choudhary, A. A common technique for delicate and cell-free detection of CRISPR-associated nucleases. Chem. Sci. 10, 2653–2662 (2019).
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).
Montagne, Okay., Gines, G., Fujii, T. & Rondelez, Y. Boosting performance of artificial DNA circuits with tailor-made deactivation. Nat. Commun. 7, 13474 (2016).
Gines, G. et al. Isothermal digital detection of microRNA utilizing background-free molecular circuit. Sci. Adv. 6, eaay5952 (2020).
Shenshin, V. A., Lescanne, C., Gines, G. & Rondelez, Y. A small-molecule chemical interface for molecular applications. Nucleic Acids Res. 49, 7765–7774 (2021).
Okumura, S. et al. Nonlinear decision-making with enzymatic neural networks. Nature 610, 496–501 (2022).
Li, Y. et al. Ultrasensitive isothermal detection of SARS-CoV-2 primarily based on self-priming hairpin-utilized amplification of the G-rich sequence. Anal. Chem. 94, 17448–17455 (2022).
Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome modifying by catalytically lively and inactive CRISPR-Cas9 utilizing uneven donor DNA. Nat. Biotechnol. 34, 339–344 (2016).
Raper, A. T., Stephenson, A. A. & Suo, Z. Practical insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140, 2971–2984 (2018).
Phaneuf, C. R. et al. Ultrasensitive multi-species detection of CRISPR-Cas9 by a conveyable centrifugal microfluidic platform. Anal. Strategies 11, 559–565 (2019).
Zhang, X.-P. & Heyer, W.-D. in DNA Recombination: Strategies and Protocols (ed. Tsubouchi, H.) 329–343 (Humana Press, 2011); https://doi.org/10.1007/978-1-61779-129-1_19
Tanford, C. in Advances in Protein Chemistry vol. 23 (eds. Anfinsen, C. B. et al.) 121–282 (Educational Press, 1968).
Berlett, B. S. & Stadtman, E. R. Protein oxidation in growing old, illness, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).
Liu, G., Lin, Q., Jin, S. & Gao, C. The CRISPR-Cas toolbox and gene modifying applied sciences. Mol. Cell 82, 333–347 (2022).
Phan, Q. A., Truong, L. B., Medina-Cruz, D., Dincer, C. & Mostafavi, E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens. Bioelectron. 197, 113732 (2022).
Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. Excessive-throughput injection with microfluidics utilizing picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).
Mazutis, L. & Griffiths, A. D. Selective droplet coalescence utilizing microfluidic techniques. Lab Chip 12, 1800–1806 (2012).
Mattox, A. Okay. et al. Functions of liquid biopsies for most cancers. Sci. Transl. Med. 11, eaay1984 (2019).
Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Present and future views of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).
Abbotts, R. & Madhusudan, S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable goal in most cancers. Most cancers Deal with. Rev. 36, 425–435 (2010).
Collins, A. R. & Gaivão, I. DNA base excision restore as a biomarker in molecular epidemiology research. Mol. Asp. Med. 28, 307–322 (2007).
Zaher, D. M. et al. Latest advances with alkaline phosphatase isoenzymes and their inhibitors. Arch. Pharm. 353, e2000011 (2020).
Sachsenhauser, V. & Bardwell, J. C. Directed evolution to enhance protein folding in vivo. Curr. Opin. Struct. Biol. 48, 117–123 (2018).
Dramé-Maigné, A. et al. In vitro enzyme self-selection utilizing molecular applications. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.3c00385 (2024).
Xue, Q. & Yeung, E. S. Variations within the chemical reactivity of particular person molecules of an enzyme. Nature 373, 681–683 (1995).
Craig, D. B. et al. Variations within the common single molecule actions of E. coli β-galactosidase: impact of supply, enzyme molecule age and temperature of induction. J. Protein Chem. 22, 555–561 (2003).
Tawfik, D. S. Messy biology and the origins of evolutionary improvements. Nat. Chem. Biol. 6, 692–696 (2010).
Willensdorfer, M., Bürger, R. & Nowak, M. A. Phenotypic mutation charges and the abundance of irregular proteins in yeast. PLoS Comput. Biol. 3, e203 (2007).
Yamagata, A., Masui, R., Kakuta, Y., Kuramitsu, S. & Fukuyama, Okay. Overexpression, purification and characterization of RecJ protein from Thermus thermophilus HB8 and its core area. Nucleic Acids Res. 29, 4617–4624 (2001).
Menezes, R., Dramé-Maigné, A., Taly, V., Rondelez, Y. & Gines, G. Streamlined digital bioassays with a 3D printed pattern changer. Analyst 145, 572–581 (2019).
Lobato-Dauzier, N. et al. Silicon chambers for enhanced incubation and imaging of microfluidic droplets. Lab Chip 23, 2854–2865 (2023).
Pekin, D. et al. Quantitative and delicate detection of uncommon mutations utilizing droplet-based microfluidics. Lab Chip 11, 2156–2166 (2011).