[HTML payload içeriği buraya]
27.3 C
Jakarta
Sunday, November 24, 2024

Polydopamine-assisted aptamer-carrying tetrahedral DNA microelectrode sensor for ultrasensitive electrochemical detection of exosomes | Journal of Nanobiotechnology


  • Chia BS, Low YP, Wang Q, Li P, Gao ZQ. Advances in exosome quantification strategies. TrAC Tendencies Anal Chem. 2017;86:93–106. https://doi.org/10.1016/j.trac.2016.10.012.

    Article 
    CAS 

    Google Scholar
     

  • Solar ZQ, Shi Okay, Yang SX, Liu JB, Zhou QB, Wang GX, Music JM, Li Z, Zhang ZY, Yuan WT. Impact of exosomal miRNA on most cancers biology and scientific purposes. Mol Most cancers. 2018. https://doi.org/10.1186/s12943-018-0897-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tkach M, Thery C. Communication by extracellular vesicles: the place we’re and the place we have to go. Cell. 2016;164(6):1226–32. https://doi.org/10.1016/j.cell.2016.01.043.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D. Position of exosomal proteins in most cancers analysis. Mol Most cancers. 2017;16(1):145. https://doi.org/10.1186/s12943-017-0706-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Tendencies Cell Biol. 2015;25(6):364–72. https://doi.org/10.1016/j.tcb.2015.01.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hannafon B, Ding WQ. Intercellular communication by exosome-derived microRNAs in most cancers. Int J Mol Sci. 2013;14(7):14240–69. https://doi.org/10.3390/ijms140714240.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(D1):D1241–4. https://doi.org/10.1093/nar/gkr828.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. https://doi.org/10.1002/pmic.200900351.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–45. https://doi.org/10.1016/j.cell.2019.02.029.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Zou L, Yang X, Liu X, Nie W, Zheng Y, Cheng Q, Wang Okay. Direct quantification of cancerous exosomes through floor plasmon resonance with twin gold nanoparticle-assisted sign amplification. Biosens Bioelectron. 2019;135:129–36. https://doi.org/10.1016/j.bios.2019.04.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Zong S, Wang Y, Li N, Li L, Lu J, Wang Z, Chen B, Cui Y. Screening and a number of detection of most cancers exosomes utilizing an SERS-based methodology. Nanoscale. 2018;10(19):9053–62. https://doi.org/10.1039/c7nr09162a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Meng HM, An Y, Geng X, Zhao KR, Qu LB, Li ZH. Construction-switching aptamer triggering hybridization displacement response for label-free detection of exosomes. Talanta. 2020. https://doi.org/10.1016/j.talanta.2019.120510.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Tang C, Zhao L, Xu L, Zhou W, Dong Z, Yang Y, Xie Q, Fang X. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale. 2019;11(20):10106–13. https://doi.org/10.1039/c9nr01589b.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei P, Wu F, Kang B, Solar XH, Heskia F, Pachot A, Liang J, Li DW. Plasma extracellular vesicles detected by single molecule array expertise as a liquid biopsy for colorectal most cancers. J Extracell Vesicles. 2020. https://doi.org/10.1080/20013078.2020.1809765.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu XJ, Zhao HT, Natalia A, Lim CZJ, Ho NRY, Ong CAJ, Teo MCC, So JBY, Shao HL. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aba2556.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng N, Music Y, Shi Q, Du D, Liu D, Luo Y, Xu W, Lin Y. Au@Pd nanopopcorn and aptamer nanoflower assisted lateral circulation strip for thermal detection of exosomes. Anal Chem. 2019;91(21):13986–93. https://doi.org/10.1021/acs.analchem.9b03562.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Jin H, Jiang X, Gui R. Meeting of black phosphorus nanosheets and MOF to kind practical hybrid thin-film for exact protein seize, dual-signal and intrinsic self-calibration sensing of particular cancer-derived exosomes. Anal Chem. 2020;92(3):2866–75. https://doi.org/10.1021/acs.analchem.9b05583.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An Y, Jin TY, Zhu YY, Zhang F, He PG. An ultrasensitive electrochemical aptasensor for the dedication of tumor exosomes based mostly on click on chemistry. Biosens Bioelectron. 2019. https://doi.org/10.1016/j.bios.2019.111503.

    Article 
    PubMed 

    Google Scholar
     

  • Huang RR, He L, Xia YY, Xu HP, Liu C, Xie H, Wang S, Peng LJ, Liu YF, Liu Y, et al. A delicate aptasensor based mostly on a hemin/G-quadruplex-assisted sign amplification technique for electrochemical detection of gastric most cancers exosomes. Small. 2019. https://doi.org/10.1002/smll.201900735.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Zeng L, Wang Y, Chen T, Chen W, Chen G, Li C, Chen J. Electrochemical aptasensor based mostly on multidirectional hybridization chain response for detection of tumorous exosomes. Sens Actuators B. 2021. https://doi.org/10.1016/j.snb.2021.129471.

    Article 

    Google Scholar
     

  • Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y. In situ formation of gold nanoparticles embellished Ti3C2 MXenes nanoprobe for extremely delicate electrogenerated chemiluminescence detection of exosomes and their floor proteins. Anal Chem. 2020;92(7):5546–53. https://doi.org/10.1021/acs.analchem.0c00469.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XW, Hatamie A, Ewing AG. Simultaneous quantification of vesicle dimension and catecholamine content material by resistive pulses in nanopores and vesicle impression electrochemical cytometry. J Am Chem Soc. 2020;142(9):4093–7. https://doi.org/10.1021/jacs.9b13221.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S, Arshid N, Cinti S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: from the benchtop to all over the place? Biosens Bioelectron. 2022. https://doi.org/10.1016/j.bios.2022.114635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Zhang LQ, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong CY, Teng IT, Shi ML, et al. Aptasensor with expanded nucleotide utilizing DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11(4):3943–9. https://doi.org/10.1021/acsnano.7b00373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Shoaie N, Jahanpeyma F, Zhao J, Azimzadeh M, Al-Jamal KT. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a complete overview. Biosens Bioelectron. 2020. https://doi.org/10.1016/j.bios.2020.112222.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan YP, Duan XL, Zhao M, Wei XT, Wu JL, Chen WQ, Liu P, Cheng W, Cheng Q, Ding SJ. Excessive-sensitive and multiplex biosensing assay of NSCLC-derived exosomes through totally different recognition websites based mostly on SPRi array. Biosens Bioelectron. 2020. https://doi.org/10.1016/j.bios.2020.112066.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu XC, He L, Pentok M, Yang HW, Yang YL, Li ZY, He NY, Deng Y, Li S, Liu TH, et al. An aptamer-based new methodology for aggressive fluorescence detection of exosomes. Nanoscale. 2019;11(33):15589–95. https://doi.org/10.1039/c9nr04050a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu LZ, Chopdat R, Li DY, Al-Jamal KT. Growth of a easy, delicate and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens Bioelectron. 2020. https://doi.org/10.1016/j.bios.2020.112576.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Ai Okay, Lu L. Polydopamine and its spinoff supplies: synthesis and promising purposes in vitality, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–115. https://doi.org/10.1021/cr400407a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynge ME, van der Westen R, Postma A, Stadler B. Polydopamine–a nature-inspired polymer coating for biomedical science. Nanoscale. 2011;3(12):4916–28. https://doi.org/10.1039/c1nr10969c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang CY, Kimura Okay, Li JC, Richardson JJ, Naito M, Miyata Okay, Ichiki T, Ejima H. Polydopamine-mediated floor functionalization of exosomes. ChemNanoMat. 2021;7(6):592–5. https://doi.org/10.1002/cnma.202100078.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Wang F, Zhang H, Wang H, Liu Y. Multivalency interface and g-C3N4 coated liquid steel nanoprobe sign amplification for delicate electrogenerated chemiluminescence detection of exosomes and their floor proteins. Anal Chem. 2019;91(18):12100–7. https://doi.org/10.1021/acs.analchem.9b03427.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wightman RM. Microvoltammetric electrodes. Anal Chem. 1981;53(9):1125A-1134A. https://doi.org/10.1021/ac00232a791.

    Article 
    CAS 

    Google Scholar
     

  • You TY, Yang XR, Wang EK. Functions of microelectrodes in capillary electrophoresis electrochemical detection. Electroanalysis. 1999;11(7):459–64. https://doi.org/10.1002/(sici)1521-4109(199906)11:7percent3c459::Support-elan459percent3e3.0.Co;2-o.

    Article 
    CAS 

    Google Scholar
     

  • Iliuk AB, Hu LH, Tao WA. Aptamer in bioanalytical purposes. Anal Chem. 2011;83(12):4440–52. https://doi.org/10.1021/ac201057w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni SJ, Zhuo ZJ, Pan YF, Yu YY, Li FF, Liu J, Wang LY, Wu XQ, Li DJ, Wan YY, et al. Latest progress in aptamer discoveries and modifications for therapeutic purposes. ACS Appl Mater Interfaces. 2021;13(8):9500–19. https://doi.org/10.1021/acsami.0c05750.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin M, Music P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C. Electrochemical detection of nucleic acids, proteins, small molecules and cells utilizing a DNA-nanostructure-based common biosensing platform. Nat Protoc. 2016;11(7):1244–63. https://doi.org/10.1038/nprot.2016.071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing C, Chen HH, Cai RF, Tian YP, Zhou ND. An electrochemical aptasensor for ATP based mostly on a configuration-switchable tetrahedral DNA nanostructure. Anal Strategies. 2020;12(25):3285–9. https://doi.org/10.1039/d0ay00431f.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li HB, Han M, Weng X, Zhang YY, Li J. DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano. 2021;15(1):1710–7. https://doi.org/10.1021/acsnano.0c09374.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen YL, Li LY, Li J, Lin MH, Liu G, Liang W, Xu L, Li Y, Zuo XL, Ren SZ, et al. DNA framework-mediated electrochemical biosensing platform for amplification-free MicroRNA evaluation. Anal Chem. 2020;92(6):4498–503. https://doi.org/10.1021/acs.analchem.9b05616.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Jose Alcaraz M, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal info for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the worldwide society for extracellular vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patchsung M, Jantarug Okay, Pattama A, Aphicho Okay, Suraritdechachai S, Meesawat P, Sappakhaw Okay, Leelahakorn N, Ruenkam T, Wongsatit T, et al. Medical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020;4(12):1140–9. https://doi.org/10.1038/s41551-020-00603-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park SM, Yoo JS. Electrochemical impedance spectroscopy for higher electrochemical measurements. Anal Chem. 2003;75(21):455a–61a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and performance. Nat Rev Immunol. 2002;2(8):569–79. https://doi.org/10.1038/nri855.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell tradition supernatants and organic fluids. Curr Protoc Cell Biol. 2006. https://doi.org/10.1002/0471143030.cb0322s30.

    Article 
    PubMed 

    Google Scholar
     

  • Inkpen MS, Liu ZF, Li H, Campos LM, Neaton JB, Venkataraman L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers. Nat Chem. 2019;11(4):351–8. https://doi.org/10.1038/s41557-019-0216-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G. A fluorescence-based methodology for figuring out the floor protection and hybridization effectivity of thiol-capped oligonucleotides sure to gold skinny movies and nanoparticles. Anal Chem. 2000;72(22):5535–41. https://doi.org/10.1021/ac0006627.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maxwell DJ, Taylor JR, Nie SM. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc. 2002;124(32):9606–12. https://doi.org/10.1021/ja025814p.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kubiak WW, Strozik MM. Research of the circulation dependence of microelectrode and semi-microelectrode voltammetric alerts. J Electroanal Chem. 1996;417(1–2):95–103. https://doi.org/10.1016/s0022-0728(96)04744-4.

    Article 
    CAS 

    Google Scholar
     

  • Nirmaier HP, Henze G. Attribute habits of macro-, semimicro- and microelectrodes in voltammetric and chronoamperometric measurements. Electroanalysis. 1997;9(8):619–24. https://doi.org/10.1002/elan.1140090808.

    Article 
    CAS 

    Google Scholar
     

  • D’Alvise TM, Harvey S, Hueske L, Szelwicka J, Veith L, Knowles TPJ, Kubiczek D, Flaig C, Port F, Gottschalk KE, et al. Ultrathin polydopamine movies with phospholipid nanodiscs containing a glycophorin A website. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202000378.

    Article 

    Google Scholar
     

  • Gao X, Teng X, Dai Y, Li J. Rolling circle amplification-assisted circulation cytometry strategy for simultaneous profiling of exosomal floor proteins. ACS Sens. 2021;6(10):3611–20. https://doi.org/10.1021/acssensors.1c01163.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Xie H, Ding C. Designed Co-DNA-locker and ratiometric SERS sensing for correct detection of exosomes based mostly on gold nanorod arrays. ACS Appl Mater Interfaces. 2021;13(28):32837–44. https://doi.org/10.1021/acsami.1c09388.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Lin Q, Huang Z, Xiong H, Yang B, Chen H, Kong J. Aptamer-initiated catalytic hairpin meeting fluorescence assay for common, delicate exosome detection. Anal Chem. 2022;94(15):5723–8. https://doi.org/10.1021/acs.analchem.2c00231.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie Y, Wang P, Wang S, Ma Q, Su X. Correct seize and identification of exosomes: nanoarchitecture of the MXene heterostructure/engineered lipid layer. ACS Sens. 2023;8(4):1850–7. https://doi.org/10.1021/acssensors.3c00370.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng F, Yu W, Niu M, Tian X, Miao Y, Li X, Zhou Y, Ma L, Zhang X, Qian Okay, et al. Ratiometric electrochemical OR gate assay for NSCLC-derived exosomes. J Nanobiotechnol. 2023;21(1):104. https://doi.org/10.1186/s12951-023-01833-2.

    Article 
    CAS 

    Google Scholar
     

  • Huang M, Xiang Y, Chen Y, Lu H, Zhang H, Liu F, Qin X, Qin X, Li X, Yang F. Backside-up sign boosting with fractal nanostructuring and primer alternate response for ultrasensitive detection of cancerous exosomes. ACS Sens. 2023;8(3):1308–17. https://doi.org/10.1021/acssensors.2c02819.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang MH, Lin YX, Wu S, Deng Y, Zhang YY, Yang J, Li GX. An electrochemical biosensor for PD-L1 optimistic exosomes based mostly on ultra-thin two-dimensional covalent natural framework nanosheets coupled with CRISPR-Cas12a mediated sign amplification. Sens Actuators B-Chem. 2022. https://doi.org/10.1016/j.snb.2022.131813.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng W, Solar Y, Zhao G, Khan A, Zhang J, Zhang Z, Yi Y, Kong D, Li J. A novel peptide-templated AgNPs nanoprobe for theranostics of prostate most cancers. Biosens Bioelectron. 2023;223:114978. https://doi.org/10.1016/j.bios.2022.114978.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boriachek Okay, Masud MK, Palma C, Phan HP, Yamauchi Y, Hossain MSA, Nguyen NT, Salomon C, Shiddiky MJA. Avoiding pre-isolation step in exosome evaluation: direct isolation and delicate detection of exosomes utilizing gold-loaded nanoporous ferric oxide nanozymes. Anal Chem. 2019;91(6):3827–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Ma L, Gong M, Su G, Zhu S, Zhang W, Wang S, Li Z, Chen C, Li L, Wu L, Yan X. Protein profiling and sizing of extracellular vesicles from colorectal most cancers sufferers through circulation cytometry. ACS Nano. 2018;12(1):671–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo X, An MR, Cuneo KC, Lubman DM, Li L. Excessive-performance chemical isotope labeling liquid chromatography mass spectrometry for exosome metabolomics. Anal Chem. 2018;90(14):8314–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles