[HTML payload içeriği buraya]
31.6 C
Jakarta
Thursday, September 18, 2025

Nanotechnology for CAR T cells and tumour-infiltrating lymphocyte therapies


  • Emens, L. A. et al. Challenges and alternatives in most cancers immunotherapy: a Society for Immunotherapy of Most cancers (SITC) strategic imaginative and prescient. J. Immunother. Most cancers 12, e009063 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atkins, M., Kunkel, L., Sznol, M. & Rosenberg, S. Excessive-dose recombinant interleukin-2 remedy in sufferers with metastatic melanoma: long-term survival replace. Most cancers J. Sci. Am. 6, 11–14 (2000).


    Google Scholar
     

  • Yang, J. C. et al. Randomized research of high-dose and low-dose interleukin-2 in sufferers with metastatic renal most cancers. J. Clin. Oncol. 21, 3127–3132 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X. & Xu, C. Immune checkpoint signaling and most cancers immunotherapy. Cell Res. 30, 660–669 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The way forward for engineered immune cell therapies. Science 378, 853–858 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, S. A. & Restifo, N. P. Adoptive cell switch as personalised immunotherapy for human most cancers. Science 348, 62–68 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awasthi, R., Maier, H. J., Zhang, J. & Lim, S. Kymriah® (tisagenlecleucel)–An outline of the medical growth journey of the primary authorized CAR-T remedy. Hum. Vaccin. Immunother. 19, 2210046 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julve, M., Lythgoe, M. P., Larkin, J. & Furness, A. J. S. Lifileucel: the primary mobile remedy authorized for strong tumours. Traits Most cancers 10, 475–477 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monberg, T. J., Borch, T. H., Svane, I. M. & Donia, M. TIL remedy: info and hopes. Clin. Most cancers Res. 29, 3275–3283 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Sperling, A. S., Smith, E. L. & Mooney, D. J. Optimizing the manufacturing and antitumour response of CAR T remedy. Nat. Rev. Bioeng. 1, 271–285 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Matsueda, S., Chen, L., Li, H., Yao, H. & Yu, F. Latest medical researches and technological growth in TIL remedy. Most cancers Immunol. Immunother. 73, 232 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyun, J., Kim, S. J., Cho, S. D. & Kim, H. W. Mechano-modulation of T cells for most cancers immunotherapy. Biomaterials 297, 122101 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. Y., Qiu, T., Ling, Y., Yang, Y. & Zhou, Y. Bodily and chemical cues on the nano–bio interface for immunomodulation. Angew. Chem. 61, e202209499 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Particular activation and focusing on of cytotoxic lymphocytes via chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor results and may set up reminiscence in sufferers with superior leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • FDA approves obecabtagene autoleucel for adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. US Meals and Drug Administration https://www.fda.gov/medicine/resources-information-approved-drugs/fda-approves-obecabtagene-autoleucel-adults-relapsed-or-refractory-b-cell-precursor-acute (2024).

  • Juan, M., Delgado, J., Calvo, G., Trias, E. & Urbano-Ispizua, Á. Is hospital exemption another or a bridge to european medicines company for creating tutorial chimeric antigen receptor T-cell in Europe? Our expertise with ARI-0001. Hum. Gene Ther. 32, 1004–1007 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damodar, S. et al. Early outcomes from a phase-2 research of varnimcabtagene autoleucel (IMN-003A), a first-in-India business CD19-directed CAR-T cell remedy with fractionated infusions for sufferers with relapsed and/or refractory B cell malignancies (IMAGINE research). Blood 140, 10343–10344 (2022).

    Article 

    Google Scholar
     

  • Oliver-Caldes, A. et al. Biomarkers of efficacy and security of the educational BCMA-CART ARI0002h for the therapy of refractory a number of myeloma. Clin. Most cancers Res. 30, 2085–2096 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie, T. Talicabtagene autoleucel: first approval. Mol. Diagn. Ther. 28, 495–499 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Therapeutics declares NMPA approval of the supplemental organic license utility for Carteyva in grownup sufferers with relapsed or refractory mantle cell lymphoma. JW Therapeutics https://www.jwtherapeutics.com/en/media/press-release/20240827/ (2024).

  • Wang, Y. et al. Inaticabtagene autoleucel in grownup relapsed or refractory B-cell acute lymphoblastic leukemia. Blood Adv. 9, 836–843 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saez-Ibañez, A. R. et al. The altering panorama of most cancers cell therapies: medical trials and real-world knowledge. Nat. Rev. Drug Discov. 23, 736–737 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Rosenberg, S. A., Spiess, P. & Lafreniere, R. A brand new method to the adoptive immunotherapy of most cancers with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diorio, C., Teachey, D. T. & Grupp, S. A. Allogeneic chimeric antigen receptor cell therapies for most cancers: progress made and remaining roadblocks. Nat. Rev. Clin. Oncol. 22, 10–27 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hopewell, E. L., Cox, C., Pilon-Thomas, S. & Kelley, L. L. Tumor infiltrating lymphocytes streamlining a posh manufacturing course of. Cytotherapy 21, 307–314 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flugel, C. L. et al. Overcoming on-target, off-tumour toxicity of CAR T cell remedy for strong tumours. Nat. Rev. Clin. Oncol. 20, 49–62 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albelda, S. M. CAR T cell remedy for sufferers with strong tumours: key classes to be taught and unlearn. Nat. Rev. Clin. Oncol. 21, 47–66 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Tumor infiltrating lymphocyte (TIL) remedy for strong tumor therapy: progressions and challenges. Cancers 14, 4160 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madkour, L. H. in Nanoelectronic Supplies: Fundamentals and Functions (ed. Madkour, L. H.) 1–47 (Springer, 2019).

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joyce, P. et al. A translational framework to DELIVER nanomedicines to the clinic. Nat. Nanotechnol. 19, 1597–1611 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles within the clinic: an replace submit COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, F., Guo, Z., Ho, M. T., Hui, Y. & Zhao, C. X. Particle-based synthetic antigen-presenting cell techniques for T cell activation in adoptive T cell remedy. ACS Nano 18, 8571–8599 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, T., Kumar, A. R. Ok., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Strategies 8, e2301300 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sunshine, J. C. & Inexperienced, J. J. Nanoengineering approaches to the design of synthetic antigen-presenting cells. Nanomedicine 8, 1173–1189 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahotre, S. N., Romanov, A. M., Su, F. Y. & Kwong, G. A. Artificial antigen-presenting cells for adoptive T cell remedy. Adv. Ther. 4, 2100034 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ben-Akiva, E. et al. Form issues: biodegradable anisotropic nanoparticle synthetic antigen presenting cells for most cancers immunotherapy. Acta Biomater. 160, 187–197 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perica, Ok. et al. Nanoscale synthetic antigen presenting cells for T cell immunotherapy. Nanomedicine 10, 119–129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isser, A. et al. Nanoparticle-based modulation of CD4+ T cell effector and helper capabilities enhances adoptive immunotherapy. Nat. Commun. 13, 6086 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichikawa, J. et al. Fast enlargement of extremely practical antigen-specific T cells from sufferers with melanoma by nanoscale synthetic antigen-presenting cells. Clin. Most cancers Res. 26, 3384–3396 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Ok. & Yu, Y. Janus nanoparticles for T cell activation: clustering ligands to reinforce stimulation. J. Mater. Chem. B 5, 4410–4415 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matic, J., Deeg, J., Scheffold, A., Goldstein, I. & Spatz, J. P. Fantastic tuning and environment friendly T cell activation with stimulatory aCD3 nanoarrays. Nano Lett. 13, 5090–5097 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guasch, J., Muth, C. A., Diemer, J., Riahinezhad, H. & Spatz, J. P. Integrin-assisted T-cell activation on nanostructured hydrogels. Nano Lett. 17, 6110–6116 (2017). This work proposes that the nanoscale association of anti-CD3 and integrin-binding ligands might be strategically engineered to modulate T cell activation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and alternatives for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teixeira, A. I. et al. Spatial regulation of T-cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano 15, 3441–3452 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellmeier, J. et al. DNA origami reveal the distinctive stimulatory energy of single pMHCs as T-cell antigens. Biophys. J. 120, 330a (2021).

    Article 

    Google Scholar
     

  • Cheung, A. S., Zhang, D. Ok. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells allow ex vivo enlargement of major T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fadel, T. R. et al. A carbon nanotube-polymer composite for T-cell remedy. Nat. Nanotechnol. 9, 639–647 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jie, J., Mao, D., Cao, J., Feng, P. & Yang, P. Custom-made multifunctional peptide hydrogel scaffolds for CAR-T-cell fast proliferation and strong tumor immunotherapy. ACS Appl. Mater. Interfaces 14, 37514–37527 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambert, L. H. et al. Enhancing T cell enlargement with a delicate contact. Nano Lett. 17, 821–826 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandal, S. et al. Polymer-based artificial dendritic cells for tailoring strong and multifunctional T cell responses. ACS Chem. Biol. 10, 485–492 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aramesh, M. et al. Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proc. Natl Acad. Sci. USA 118, e2107535118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhingardive, V. et al. Antibody-functionalized nanowires: a tuner for the activation of T cells. Nano Lett. 21, 4241–4248 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmaeili, F. et al. Spiky gold nanoparticles, a nanoscale method to enhanced ex vivo T-cell activation. ACS Nano 18, 21554–21564 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Ok., Kurum, A. & Tang, L. Mechanical immunoengineering of T cells for therapeutic functions. Acc. Chem. Res. 53, 2777–2790 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perica, Ok. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor exercise. ACS Nano 8, 2252–2260 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in residing cells. Nat. Strategies 13, 143–146 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Optoregulated pressure utility to mobile receptors utilizing molecular motors. Nat. Commun. 12, 3580 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, D. et al. Mechanically optimize T cells activation by spiky nanomotors. Entrance. Bioeng. Biotechnol. 10, 844091 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chada, N. C. & Wilson, J. T. Leap-starting chimeric antigen receptor-T cells to go the additional mile with nanotechnology. Curr. Opin. Biotechnol. 89, 103179 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belling, J. N. et al. Acoustofluidic sonoporation for gene supply to human hematopoietic stem and progenitor cells. Proc. Natl Acad. Sci. USA 117, 10976–10982 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sytsma, B. J. et al. Scalable intracellular supply through microfluidic vortex shedding enhances the operate of chimeric antigen receptor T-cells. Sci. Rep. 15, 5749 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aramesh, M. et al. Enhanced mobile uptake via nanotopography-induced macropinocytosis. Adv. Funct. Mater. 34, 2400487 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pan, H. et al. Glycometabolic bioorthogonal chemistry-guided viral transduction for strong human T cell engineering. Adv. Funct. Mater. 29, 1807528 (2019).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Environment friendly non-viral CAR-T cell era through silicon-nanotube-mediated transfection. Mater. At this time 63, 8–17 (2023).

    Article 

    Google Scholar
     

  • Shokouhi, A. R. et al. Engineering environment friendly CAR-T cells through electroactive nanoinjection. Adv. Mat. 35, e2304122 (2023).

    Article 

    Google Scholar
     

  • Tay, A. & Melosh, N. Mechanical stimulation after centrifuge-free nano-electroporative transfection is environment friendly and maintains long-term T cell functionalities. Small 17, 2103198 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, R. et al. Quick spatial-selective supply into stay cells. J. Management. Launch 266, 198–204 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinto, I. S., Cordeiro, R. A. & Faneca, H. Polymer- and lipid-based gene supply expertise for CAR T cell remedy. J. Management. Launch 353, 196–215 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selby, L. I., Cortez-Jugo, C. M., Such, G. Ok. & Johnston, A. P. R. Nanoescapology: progress towards understanding the endosomal escape of polymeric nanoparticles. WIREs Nanomed. Nanobiotechnol. 9, e1452 (2017).

    Article 

    Google Scholar
     

  • Olden, B. R., Cheng, Y., Yu, J. L. & Pun, S. H. Cationic polymers for non-viral gene supply to human T cells. J. Management. Launch 282, 140–147 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prazeres, P. H. D. M. et al. Supply of plasmid DNA by ionizable lipid nanoparticles to induce CAR expression in T cells. Int. J. Nanomed. 18, 5891–5904 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA supply for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padilla, M. S. et al. Branched endosomal disruptor (BEND) lipids mediate supply of mRNA and CRISPR-Cas9 ribonucleoprotein advanced for hepatic gene modifying and T cell engineering. Nat. Commun. 16, 996 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metzloff, A. E. et al. Antigen presenting cell mimetic lipid nanoparticles for fast mRNA CAR T cell most cancers immunotherapy. Adv. Mater. 36, 2313226 (2024). This publication presents lipid nanoparticles conjugated with anti-CD3 and anti-CD28, and encapsulating CAR mRNA, enabling activation and transfection of major human T cells in a single step.

    Article 
    CAS 

    Google Scholar
     

  • Billingsley, M. M. et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 22, 533–542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yee Mon, Ok. J. et al. Functionalized nanowires for miRNA-mediated therapeutic programming of naïve T cells. Nat. Nanotech. 19, 1190–1202 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, A. G. et al. Ionizable lipid nanoparticles with built-in immune checkpoint inhibition for mRNA CAR T cell engineering. Adv. Healthc. Mater. 12, 2301515 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chamberlain, C. A. et al. Extremely environment friendly PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell remedy. Mol. Ther. Oncolytics 24, 417–428 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brudno, J. N., Maus, M. V. & Hinrichs, C. S. CAR T cells and T-cell therapies for most cancers: a translational science evaluation. JAMA 22, 1924–1935 (2024).

    Article 

    Google Scholar
     

  • Wang, L. et al. The dilemmas and attainable options for CAR-T cell remedy utility in strong tumors. Most cancers Lett. 591, 216871 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, A. Q. et al. Common redirection of CAR T cells towards strong tumours through membrane-inserted ligands for the CAR. Nat. Biomed. Eng. 7, 1113–1128 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhard, Ok. et al. An RNA vaccine drives enlargement and efficacy of claudin-CAR-T cells towards strong tumors. Science 367, 446–453 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, J., Fagan, E., Jeong, M. & Park, J.-H. In situ tumor-infiltrating lymphocyte remedy by native supply of an mRNA encoding membrane-anchored anti-CD3 single-chain variable fragment. ACS Nano 18, 32401–32420 (2024). This work explores the usage of mRNA-loaded lipid nanoparticles in tumours, enabling the in vivo engineering of TAMs and tumour cells to precise anti-CD3 and thereby promote in situ engagement of TILs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephan, M. T., Moon, J. J., Um, S. H., Bersthteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated artificial nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, L. et al. Enhancing T cell remedy via TCR-signaling-responsive nanoparticle drug supply. Nat. Biotechnol. 36, 707–716 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. IL-12 nanochaperone-engineered CAR T cell for strong tumor-immunotherapy. Biomaterials 281, 121341 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Cytokine conjugation to reinforce T cell remedy. Proc. Natl Acad. Sci. USA 120, e2213222120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. In vivo focusing on of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J. Management. Launch 172, 426–435 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, L. et al. Direct in vivo activation of T cells with nanosized immunofilaments inhibits tumor progress and metastasis. ACS Nano 17, 12101–12117 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y. et al. DNA origami–based mostly synthetic antigen-presenting cells for adoptive T cell remedy. Sci. Adv. 8, eadd1106 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, R. A. et al. Biodegradable nanoellipsoidal synthetic antigen presenting cells for antigen particular T-cell activation. Small 11, 1519 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Enhancing adoptive cell remedy by T cell loading of SHP2 inhibitor nanocrystals earlier than infusion. ACS Nano 16, 10918–10930 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed supply of immunomodulators utilizing T-cell-conjugated nanoparticles. Biomaterials 33, 5776–5787 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siriwon, N. et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Most cancers Immunol. Res. 6, 812–824 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Nanoengineered CAR-T biohybrids for strong tumor immunotherapy with microenvironment photothermal-remodeling technique. Small 17, 2007494 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z. et al. A collagenase nanogel backpack improves CAR-T cell remedy outcomes in pancreatic most cancers. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01924-1 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Nie, W. et al. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell remedy for strong tumors. ACS Nano 13, 1469–1478 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmid, D. et al. T cell-targeting nanoparticles focus supply of immunotherapy to enhance antitumor immunity. Nat. Commun. 8, 1747 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Nanoparticles that reshape the tumor milieu create a therapeutic window for efficient T-cell remedy in strong malignancies. Most cancers Res. 78, 3718–3730 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Non-invasive activation of intratumoural gene modifying for improved adoptive T-cell remedy in strong tumours. Nat. Nanotechnol. 18, 933–944 (2023). This text presents a light heat-activated Cas9-based nanodevice that concurrently disrupts immunosuppression within the tumour microenvironment and the apoptotic resistance of tumour cells, enhancing the infiltration and efficacy of TILs and CAR T cells.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, T. et al. Inhalable nanovesicles loaded with a STING agonist improve CAR-T cell exercise towards strong tumors within the lung. Nat. Commun. 16, 262 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, J., Guo, R., Liu, M., Hu, H. & Zhang, H. Multi-modal Ca2+ nanogenerator through reversing T cell exhaustion for enhanced chemo-immunotherapy. J. Management. Launch 372, 715–727 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, I. C. et al. Enhanced intratumoural exercise of CAR T cells engineered to provide immunomodulators below photothermal management. Nat. Biomed. Eng. 5, 1348–1359 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced security. Nat. Nanotechnol. 16, 1424–1434 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfister, F. et al. Loading of CAR-T cells with magnetic nanoparticles for managed focusing on suppresses inflammatory cytokine launch and switches tumor cell loss of life mechanism. MedComm 6, e70039 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, N. et al. In situ PEGylation of CAR T cells alleviates cytokine launch syndrome and neurotoxicity. Nat. Mater. 22, 1571–1580 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quick, L., Holt, R. A., Cullis, P. R. & Evgin, L. Direct in vivo CAR T cell engineering. Traits Pharmacol. Sci. 45, 406–418 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells utilizing artificial DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C. et al. Injectable supramolecular hydrogels for in situ programming of CAR-T cells towards strong tumor immunotherapy. Adv. Mater. 36, 2310078 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. E. et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J. Management. Launch 350, 298–307 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020). This research explores mRNA-loaded polymer nanocarriers that programme host T cells to transiently specific tumour-specific CARs straight in vivo.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering through focused ionizable lipid nanoparticles with extrahepatic tropism. Small 20, 2304378 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Álvarez-Benedicto, E. et al. Spleen SORT LNP generated in situ CAR T cells lengthen survival in a mouse mannequin of lymphoreplete B cell lymphoma. Angew. Chem. Int. Ed. 62, e202310395 (2023).

    Article 

    Google Scholar
     

  • Zhao, G., Zhang, Y., Xu, C. F. & Wang, J. In vivo manufacturing of CAR-T cells utilizing virus-mimetic fusogenic nanovesicles. Sci. Bull. 69, 354–366 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hamilton, E. et al. 801PRIMETM IL-15 (RPTR-147): preliminary medical outcomes and biomarker evaluation from a first-in-human Part 1 research of IL-15 loaded peripherally-derived autologous T cell remedy in strong tumor sufferers. J. Immunother. Most cancers 8, A479–A480 (2020).


    Google Scholar
     

  • Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seif, M. et al. CAR T cells focusing on Aspergillus fumigatus are efficient at treating invasive pulmonary aspergillosis in preclinical fashions. Sci. Transl. Med. 14, eabh1209 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackensen, A. et al. Anti-CD19 CAR T cell remedy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lidar, M. et al. CD-19 CAR-T cells for polyrefractory rheumatoid arthritis. Ann. Rheum. Dis. 84, 370–372 (2024).

    Article 

    Google Scholar
     

  • Mohammadi, V. et al. Chimeric antigen receptor (CAR)-based cell remedy for kind 1 diabetes mellitus (T1DM); present progress and future approaches. Stem. Cell. Rev. Rep. 20, 585–600 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rurik, J. G. et al. CAR T cells produced in vivo to deal with cardiac damage. Science 375, 91–96 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qasim, W. et al. Molecular remission of toddler B-ALL after infusion of common TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schaible, P., Bethge, W., Lengerke, C. & Haraszti, R. A. RNA therapeutics for bettering CAR T-cell security and efficacy. Most cancers Res. 83, 354–362 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Themeli, M. et al. Era of tumor-targeted human T lymphocytes from induced pluripotent stem cells for most cancers remedy. Nat. Biotechnol. 31, 928–933 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing, R. et al. EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor exercise. Cell Stem Cell 29, 1181–1196.E6 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makkouk, A. et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 show strong antitumor efficacy towards hepatocellular carcinoma. J. Immunother. Most cancers 9, e003441 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, E. et al. Use of CAR-Transduced pure killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, D., Fernandes, R. A., Basham, M., Ogg, G. & Koohy, H. Can we predict T cell specificity with digital biology and machine studying? Nat. Rev. Immunol. 23, 511–521 (2023). This angle article explores how integrating digital biology with machine studying can improve the prediction of TCR–antigen specificity, deepening our understanding of antigen immunogenicity and informing the event of CAR T and TIL therapies.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. Ok. Y. et al. Enhancing CAR-T cell performance in a patient-specific method. Nat. Commun. 14, 506 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, Ok. G. et al. Decoding CAR T cell phenotype utilizing combinatorial signaling motif libraries and machine studying. Science 378, 1194–1200 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogatu, A. et al. Meta-analysis knowledgeable machine studying: Supporting cytokine storm detection throughout CAR-T cell Remedy. J. Biomed. Inform. 142, 104367 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Arabi, F., Mansouri, V. & Ahmadbeigi, N. Gene remedy medical trials, the place can we go? An outline. Biomed. Pharmacother. 153, 113324 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moradi, V., Omidkhoda, A. & Ahmadbeigi, N. The paths and challenges of ‘off-the-shelf’ CAR-T cell remedy: an summary of medical trials. Biomed. Pharmacother. 169, 115888 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeiffer, A. et al. In vivo era of human CD 19‐ CAR T cells leads to B‐cell depletion and indicators of cytokine launch syndrome. EMBO Mol. Med. 10, e9158 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology 8, e1671761 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal, S. et al. In vivo era of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783–1794 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, A. M. et al. Combining T-cell–particular activation and in vivo gene supply via CD3-targeted lentiviral vectors. Blood Adv. 4, 5702–5715 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolai, C. J. et al. In vivo CAR T-cell era in nonhuman primates utilizing lentiviral vectors displaying a multidomain fusion ligand. Blood 144, 977–987 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michels, Ok. R. et al. Preclinical proof of idea for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering. J. Immunother. Most cancers 11, e006292 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huckaby, J. T. et al. Bispecific binder redirected lentiviral vector permits in vivo engineering of CAR-T cells. J. Immunother. Most cancers 9, e002737 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nawaz, W. et al. AAV-mediated in vivo CAR gene remedy for focusing on human T-cell leukemia. Blood Most cancers J. 11, 119 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeffreys, N., Brockman, J. M., Zhai, Y., Ingber, D. E. & Mooney, D. J. Mechanical forces amplify TCR mechanotransduction in T cell activation and performance. Appl. Phys. Rev. 11, 011304 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R., Ma, C., Cai, H. & Chen, W. The CAR T-cell mechanoimmunology at a look. Adv. Sci. 7, 2002628 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chow, A., Perica, Ok., Klebanoff, C. A. & Wolchok, J. D. Scientific implications of T cell exhaustion for most cancers immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, X., He, L. & Guo, Z. T-cell exhaustion in CAR-T-cell remedy and methods to beat it. Immunology 169, 400–411 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering methods to beat the present roadblocks in CAR T cell remedy. Nat. Rev. Clin. Oncol. 17, 147–167 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity because of CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, A. D., Teachey, D. T. & Diorio, C. Driving the storm: managing cytokine-related toxicities in CAR-T cell remedy. Semin. Immunopathol. 46, 1–19 (2024).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles