[HTML payload içeriği buraya]
25.1 C
Jakarta
Saturday, June 7, 2025

Mechanochemical carbon dioxide seize and conversion


  • Davis, S. J. et al. Web-zero emissions vitality methods. Science 360, eaas9793 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Shakun, J. D. et al. International warming preceded by growing carbon dioxide concentrations over the past deglaciation. Nature 484, 49–54 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions primarily based on regional and impact-related local weather targets. Nature 529, 477–483 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, S. & Majumdar, A. Alternatives and challenges for a sustainable vitality future. Nature 488, 294–303 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The position of CO2 seize and utilization in mitigating local weather change. Nat. Clim. Chang. 7, 243–249 (2017).

    Article 

    Google Scholar
     

  • Kang, Z., Liao, Q., Zhang, Z. & Zhang, Y. Carbon neutrality orientates the reform of the metal trade. Nat. Mater. 21, 1094–1098 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, T. H. et al. Unlocking the potential of the formate pathway within the photo-assisted Sabatier response. Nat. Catal. 3, 1034–1043 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fan, M. et al. Single-site adorned copper permits energy- and carbon-efficient CO2 methanation in acidic circumstances. Nat. Commun. 14, 3314 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tébar-Soler, C. et al. Low-oxidation-state Ru websites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 22, 762–768 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, H. et al. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO2. Chem. Soc. Rev. 52, 3627–3662 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, H. et al. Mild-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with actions approaching the thermodynamic restrict. Nat. Catal. 6, 519–530 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Reversible lack of core–shell construction for Ni–Au bimetallic nanoparticles throughout CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tune, Y. et al. Dry reforming of methane by secure Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beaumont, S. Ok. et al. Combining in situ NEXAFS spectroscopy and CO2 methanation kinetics to review Pt and Co nanoparticle catalysts reveals key insights into the position of platinum in promoted cobalt catalysis. J. Am. Chem. Soc. 136, 9898–9901 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier response and its purposes on earth and in house. Nat. Catal. 2, 188–197 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Supercharged CO2 photothermal catalytic methanation: excessive conversion, charge, and selectivity. Angew. Chem. Int. Ed. 62, e202218694 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, F. et al. Low-temperature CO2 methanation: synergistic results in plasma-Ni hybrid catalytic system. ACS Maintain. Chem. Eng. 8, 1888–1898 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Selling CO2 methanation through ligand-stabilized metallic oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, G.-F. et al. Mechanochemistry for ammonia synthesis below gentle circumstances. Nat. Nanotechnol. 16, 325–330 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichle, S., Felderhoff, M. & Schuth, F. Mechanocatalytic room-temperature synthesis of ammonia from its components all the way down to atmospheric stress. Angew. Chem. Int. Ed. 60, 26385–26389 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, G.-F. et al. Excessive enhancement of carbon hydrogasification through mechanochemistry. Angew. Chem. Int. Ed. 61, e202117851 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eckert, R., Felderhoff, M. & Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts below in-situ ball milling. Angew. Chem. Int. Ed. 56, 2445–2448 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Amrute, A. P., Łodziana, Z., Schreyer, H., Weidenthaler, C. & Schüth, F. Excessive-surface-area corundum by mechanochemically induced part transformation of boehmite. Science 366, 485–489 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zholdassov, Y. S. et al. Acceleration of Diels–Alder reactions by mechanical distortion. Science 380, 1053–1058 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Deforming lanthanum trihydride for superionic conduction. Nature 616, 73–76 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khajavi, S., Rajabi, M. & Huot, J. Impact of chilly rolling and ball milling on first hydrogenation of Ti0.5Zr0.5 (Mn1-xFex) Cr1, x=0, 0.2, 0.4. J. Alloy. Compd. 775, 912–920 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Han, G.-F. et al. Abrading bulk metallic into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 seize. Nat. Catal. 4, 952–958 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duyar, M. S., Treviño, M. A. A. & Farrauto, R. J. Twin perform supplies for CO2 seize and conversion utilizing renewable H2. Appl. Catal. B 168–169, 370–376 (2015).

    Article 

    Google Scholar
     

  • Espinal, L., Poster, D. L., Wong-Ng, W., Allen, A. J. & Inexperienced, M. L. Measurement, requirements, and knowledge wants for CO2 seize supplies: a vital overview. Environ. Sci. Technol. 47, 11960–11975 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 seize by stable adsorbents and their purposes: present standing and new developments. Vitality Environ. Sci. 4, 42–55 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Mazheika, A. et al. Synthetic-intelligence-driven discovery of catalyst genes with utility to CO2 activation on semiconductor oxides. Nat. Commun. 13, 419 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ndayiragije, S. et al. Mechanochemically tailoring oxygen vacancies of MnO2 for environment friendly degradation of tetrabromobisphenol A with peroxymonosulfate. Appl. Catal. B 307, 121168 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jia, X., Zhang, X., Rui, N., Hu, X. & Liu, C.-j Structural impact of Ni/ZrO2 catalyst on CO2 methanation with enhanced exercise. Appl. Catal. B 244, 159–169 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling towards electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Enhanced visible-light photocatalytic exercise of carbonate-doped anatase TiO2 primarily based on the electron-withdrawing bidentate carboxylate linkage. Appl. Catal. B 202, 642–652 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Belgamwar, R. et al. Defects tune the robust metallic–help interactions in copper supported on defected titanium dioxide catalysts for CO2 discount. J. Am. Chem. Soc. 145, 8634–8646 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Han, G.-F. et al. Dissociating secure nitrogen molecules below gentle circumstances by cyclic pressure engineering. Sci. Adv. 5, eaax8275 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J., Zeng, F., Mebrahtu, C. & Palkovits, R. Understanding promotional results of hint oxygen in CO2 methanation over Ni/ZrO2 catalysts. J. Catal. 405, 385–390 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, M. et al. Emptiness engineering of the nickel-based catalysts for enhanced CO2 methanation. Appl. Catal. B 282, 119561 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Westermann, A. et al. Perception into CO2 methanation mechanism over NiUSY zeolites: an operando IR examine. Appl. Catal. B 174–175, 120–125 (2015).

    Article 

    Google Scholar
     

  • Pan, Q., Peng, J., Solar, T., Wang, S. & Wang, S. Perception into the response route of CO2 methanation: promotion impact of medium fundamental websites. Catal. Commun. 45, 74–78 (2014).

    Article 

    Google Scholar
     

  • Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering (Springer, 2008).

  • Lee, T. H. & Elliott, S. R. Ab initio pc simulation of the early phases of crystallization: utility to Ge2Sb2Te5 phase-change supplies. Phys. Rev. Lett. 107, 145702 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density useful. Phys. Rev. Lett. 115, 036402 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17980 (1994).

    Article 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U examine. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density useful principle. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moellmann, J. & Grimme, S. DFT-D3 examine of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles