Davis, S. J. et al. Web-zero emissions vitality methods. Science 360, eaas9793 (2018).
Shakun, J. D. et al. International warming preceded by growing carbon dioxide concentrations over the past deglaciation. Nature 484, 49–54 (2012).
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions primarily based on regional and impact-related local weather targets. Nature 529, 477–483 (2016).
Chu, S. & Majumdar, A. Alternatives and challenges for a sustainable vitality future. Nature 488, 294–303 (2012).
Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The position of CO2 seize and utilization in mitigating local weather change. Nat. Clim. Chang. 7, 243–249 (2017).
Kang, Z., Liao, Q., Zhang, Z. & Zhang, Y. Carbon neutrality orientates the reform of the metal trade. Nat. Mater. 21, 1094–1098 (2022).
Tan, T. H. et al. Unlocking the potential of the formate pathway within the photo-assisted Sabatier response. Nat. Catal. 3, 1034–1043 (2020).
Fan, M. et al. Single-site adorned copper permits energy- and carbon-efficient CO2 methanation in acidic circumstances. Nat. Commun. 14, 3314 (2023).
Tébar-Soler, C. et al. Low-oxidation-state Ru websites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 22, 762–768 (2023).
Kang, H. et al. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO2. Chem. Soc. Rev. 52, 3627–3662 (2023).
Jiang, H. et al. Mild-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with actions approaching the thermodynamic restrict. Nat. Catal. 6, 519–530 (2023).
Zhang, X. et al. Reversible lack of core–shell construction for Ni–Au bimetallic nanoparticles throughout CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).
Tune, Y. et al. Dry reforming of methane by secure Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).
Beaumont, S. Ok. et al. Combining in situ NEXAFS spectroscopy and CO2 methanation kinetics to review Pt and Co nanoparticle catalysts reveals key insights into the position of platinum in promoted cobalt catalysis. J. Am. Chem. Soc. 136, 9898–9901 (2014).
Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier response and its purposes on earth and in house. Nat. Catal. 2, 188–197 (2019).
Zhu, X. et al. Supercharged CO2 photothermal catalytic methanation: excessive conversion, charge, and selectivity. Angew. Chem. Int. Ed. 62, e202218694 (2023).
Ahmad, F. et al. Low-temperature CO2 methanation: synergistic results in plasma-Ni hybrid catalytic system. ACS Maintain. Chem. Eng. 8, 1888–1898 (2020).
Li, Y. et al. Selling CO2 methanation through ligand-stabilized metallic oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020).
Han, G.-F. et al. Mechanochemistry for ammonia synthesis below gentle circumstances. Nat. Nanotechnol. 16, 325–330 (2021).
Reichle, S., Felderhoff, M. & Schuth, F. Mechanocatalytic room-temperature synthesis of ammonia from its components all the way down to atmospheric stress. Angew. Chem. Int. Ed. 60, 26385–26389 (2021).
Han, G.-F. et al. Excessive enhancement of carbon hydrogasification through mechanochemistry. Angew. Chem. Int. Ed. 61, e202117851 (2022).
Eckert, R., Felderhoff, M. & Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts below in-situ ball milling. Angew. Chem. Int. Ed. 56, 2445–2448 (2017).
Amrute, A. P., Łodziana, Z., Schreyer, H., Weidenthaler, C. & Schüth, F. Excessive-surface-area corundum by mechanochemically induced part transformation of boehmite. Science 366, 485–489 (2019).
Zholdassov, Y. S. et al. Acceleration of Diels–Alder reactions by mechanical distortion. Science 380, 1053–1058 (2023).
Zhang, W. et al. Deforming lanthanum trihydride for superionic conduction. Nature 616, 73–76 (2023).
Khajavi, S., Rajabi, M. & Huot, J. Impact of chilly rolling and ball milling on first hydrogenation of Ti0.5Zr0.5 (Mn1-xFex) Cr1, x=0, 0.2, 0.4. J. Alloy. Compd. 775, 912–920 (2019).
Han, G.-F. et al. Abrading bulk metallic into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).
Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 seize. Nat. Catal. 4, 952–958 (2021).
Duyar, M. S., Treviño, M. A. A. & Farrauto, R. J. Twin perform supplies for CO2 seize and conversion utilizing renewable H2. Appl. Catal. B 168–169, 370–376 (2015).
Espinal, L., Poster, D. L., Wong-Ng, W., Allen, A. J. & Inexperienced, M. L. Measurement, requirements, and knowledge wants for CO2 seize supplies: a vital overview. Environ. Sci. Technol. 47, 11960–11975 (2013).
Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 seize by stable adsorbents and their purposes: present standing and new developments. Vitality Environ. Sci. 4, 42–55 (2011).
Mazheika, A. et al. Synthetic-intelligence-driven discovery of catalyst genes with utility to CO2 activation on semiconductor oxides. Nat. Commun. 13, 419 (2022).
Ndayiragije, S. et al. Mechanochemically tailoring oxygen vacancies of MnO2 for environment friendly degradation of tetrabromobisphenol A with peroxymonosulfate. Appl. Catal. B 307, 121168 (2022).
Jia, X., Zhang, X., Rui, N., Hu, X. & Liu, C.-j Structural impact of Ni/ZrO2 catalyst on CO2 methanation with enhanced exercise. Appl. Catal. B 244, 159–169 (2019).
Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling towards electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).
Liu, J. et al. Enhanced visible-light photocatalytic exercise of carbonate-doped anatase TiO2 primarily based on the electron-withdrawing bidentate carboxylate linkage. Appl. Catal. B 202, 642–652 (2017).
Belgamwar, R. et al. Defects tune the robust metallic–help interactions in copper supported on defected titanium dioxide catalysts for CO2 discount. J. Am. Chem. Soc. 145, 8634–8646 (2023).
Han, G.-F. et al. Dissociating secure nitrogen molecules below gentle circumstances by cyclic pressure engineering. Sci. Adv. 5, eaax8275 (2019).
Ren, J., Zeng, F., Mebrahtu, C. & Palkovits, R. Understanding promotional results of hint oxygen in CO2 methanation over Ni/ZrO2 catalysts. J. Catal. 405, 385–390 (2022).
Zhu, M. et al. Emptiness engineering of the nickel-based catalysts for enhanced CO2 methanation. Appl. Catal. B 282, 119561 (2021).
Westermann, A. et al. Perception into CO2 methanation mechanism over NiUSY zeolites: an operando IR examine. Appl. Catal. B 174–175, 120–125 (2015).
Pan, Q., Peng, J., Solar, T., Wang, S. & Wang, S. Perception into the response route of CO2 methanation: promotion impact of medium fundamental websites. Catal. Commun. 45, 74–78 (2014).
Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering (Springer, 2008).
Lee, T. H. & Elliott, S. R. Ab initio pc simulation of the early phases of crystallization: utility to Ge2Sb2Te5 phase-change supplies. Phys. Rev. Lett. 107, 145702 (2011).
Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density useful. Phys. Rev. Lett. 115, 036402 (2015).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17980 (1994).
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U examine. Phys. Rev. B 57, 1505–1509 (1998).
Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density useful principle. J. Comput. Chem. 32, 1456–1465 (2011).
Moellmann, J. & Grimme, S. DFT-D3 examine of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing picture nudged elastic band technique for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).