Vanmassenhove J, Kielstein J, Jörres A, Biesen WV. Administration of sufferers vulnerable to acute kidney harm. Lancet. 2017;389:2139–51.
Vaara ST, Bhatraju PK, Stanski NL, McMahon BA, Liu Ok, Joannidis M, Bagshaw SM. Subphenotypes in acute kidney harm: a story assessment. Essential Care. 2022. https://doi.org/10.1186/s13054-022-04121-x.
Abstract of advice statements. Kidney worldwide dietary supplements 2012, 2:8-12.
Kellum JA, Lameire N. Prognosis, analysis, and administration of acute kidney harm: a KDIGO abstract (half 1). Essential Care. 2013;17:204.
Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney harm. Nat Rev Dis Primers. 2021;7:52.
Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, et al. Acute kidney illness and renal restoration: consensus report of the acute illness high quality initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13:241–57.
Levey AS. Defining AKD: the spectrum of AKI, AKD, and CKD. Nephron. 2022;146:302–5.
Lameire NH, Levin A, Kellum JA, Cheung M, Jadoul M, Winkelmayer WC, Stevens PE, Caskey FJ, Farmer CKT, Ferreiro Fuentes A, et al. Harmonizing acute and continual kidney illness definition and classification: report of a kidney illness: bettering world outcomes (KDIGO) Consensus Convention. Kidney Int. 2021;100:516–26.
Meersch M, Weiss R, Strauß C, Albert F, Booke H, Forni L, Pittet J-F, Kellum JA, Rosner M, Mehta R, et al. Acute kidney illness past day 7 after main surgical procedure: a secondary evaluation of the EPIS-AKI trial. Intensive Care Med. 2024;50:247–57.
Su C-C, Chen J-Y, Chen S-Y, Shiao C-C, Neyra JA, Matsuura R, Noiri E, See E, Chen Y-T, Hsu C-Ok, et al. Outcomes related to acute kidney illness: a scientific assessment and meta-analysis. eClin Med. 2023;55:101760.
Vijayan A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat Rev Nephrol. 2020;17:87–8.
Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, et al. Worldwide society of nephrology’s 0by25 initiative for acute kidney harm (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385:2616–43.
Harrois A, Soyer B, Gauss T, Hamada S, Raux M, Duranteau J. Prevalence and danger components for acute kidney harm amongst trauma sufferers: a multicenter cohort examine. Essential Care. 2018. https://doi.org/10.1186/s13054-018-2265-9.
Huber M, Ozrazgat-Baslanti T, Thottakkara P, Scali S, Bihorac A, Hobson C. Cardiovascular-specific mortality and kidney illness in sufferers present process vascular surgical procedure. JAMA Surg. 2016;151:441.
Liu KD, Yang J, Tan TC, Glidden DV, Zheng S, Pravoverov L, Hsu C-Y, Go AS. Danger components for recurrent acute kidney harm in a big population-based cohort. Am J Kidney Dis. 2019;73:163–73.
Legrand M, Clark AT, Neyra JA, Ostermann M. Acute kidney harm in sufferers with burns. Nat Rev Nephrol. 2023;20:188–200.
Mehta RL, Burdmann EA, Cerda J, Feehally J, Finkelstein F, Garcia-Garcia G, Godin M, Jha V, Lameire NH, Levin NW, et al. Recognition and administration of acute kidney harm within the worldwide society of nephrology 0by25 world snapshot: a multinational cross-sectional examine. Lancet. 2016;387:2017–25.
Minami S, Nakamura S. Therapeutic potential of Beclin1 for transition from AKI to CKD: autophagy-dependent and autophagy-independent features. Kidney Int. 2022;101:13–5.
Abebe A, Kumela Ok, Belay M, Kebede B, Wobie Y. Mortality and predictors of acute kidney harm in adults: a hospital-based potential observational examine. Sci Rep. 2021;11:15672.
Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis Ok, Forni LG, Gomersall CD, Govil D, et al. Epidemiology of acute kidney harm in critically sick sufferers: the multinational AKI-EPI examine. Intensive Care Med. 2015;41:1411–23.
McMahon GM, Waikar SS. Biomarkers in nephrology: core curriculum 2013. Am J Kidney Dis. 2013;62:165–78.
Ronco C, Bellomo R, Kellum JA. Acute kidney harm. Lancet. 2019;394:1949–64.
Chen Q, Nan Y, Yang Y, Xiao Z, Liu M, Huang J, Xiang Y, Lengthy X, Zhao T, Wang X, et al. Nanodrugs alleviate acute kidney harm: manipulate RONS at kidney. Bioact Mater. 2023;22:141–67.
Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R. Acute kidney harm: an growing world concern. Lancet. 2013;382:170–9.
Lewington AJ, Cerda J, Mehta RL. Elevating consciousness of acute kidney harm: a worldwide perspective of a silent killer. Kidney Int. 2013;84:457–67.
Turgut F, Awad AS, Abdel-Rahman EM. Acute kidney harm: medical causes and pathogenesis. J Clin Med. 2023;12:375.
Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351:159–69.
Iwakiri Y. The molecules: mechanisms of arterial vasodilatation noticed within the splanchnic and systemic circulation in portal hypertension. J Clin Gastroenterol. 2007;41(Suppl 3):S288-294.
Leithead JA, Hayes PC, Ferguson JW. Evaluation article: advances within the administration of sufferers with cirrhosis and portal hypertension-related renal dysfunction. Aliment Pharmacol Ther. 2014;39:699–711.
Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, et al. Acute renal failure in critically sick sufferers: a multinational, multicenter examine. JAMA. 2005;294:813–8.
Arroyo V, Gines P, Gerbes AL, Dudley FJ, Gentilini P, Laffi G, Reynolds TB, Ring-Larsen H, Scholmerich J. Definition and diagnostic standards of refractory ascites and hepatorenal syndrome in cirrhosis. Int Ascites Membership Hepatol. 1996;23:164–76.
Boada-Romero E, Martinez J, Heckmann BL, Inexperienced DR. The clearance of lifeless cells by efferocytosis. Nat Rev Mol Cell Biol. 2020;21:398–414.
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and medical analysis. Entrance Genet. 2019;10:478.
Rosner MH, Jhaveri KD, McMahon BA, Perazella MA. Onconephrology: the intersections between the kidney and most cancers. CA Most cancers J Clin. 2021;71:47–77.
Nang SC, Azad MAK, Velkov T, Zhou QT, Li J. Rescuing the last-line polymyxins: achievements and challenges. Pharmacol Rev. 2021;73:679–728.
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney illness: challenges and alternatives? Microcirculation. 2021;28: e12661.
Rani N, Singh S, Dhar P, Kumar R. Surgical significance of arterial segments of human kidneys: an angiography and corrosion solid examine. J Clin Diagn Res. 2014;8:1–3.
Evans RG, Ince C, Joles JA, Smith DW, Might CN, O’Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: medical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40:106–22.
Vallon V, Thomson SC. The tubular speculation of nephron filtration and diabetic kidney illness. Nat Rev Nephrol. 2020;16:317–36.
Scholz H, Boivin FJ, Schmidt-Ott KM, Bachmann S, Eckardt KU, Scholl UI, Persson PB. Kidney physiology and susceptibility to acute kidney harm: implications for renoprotection. Nat Rev Nephrol. 2021;17:335–49.
Ergin B, Kapucu A, Demirci-Tansel C, Ince C. The renal microcirculation in sepsis. Nephrol Dial Transplant. 2015;30:169–77.
Tian Z, Liang M. Renal metabolism and hypertension. Nat Commun. 2021;12:963.
Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal illness. Nat Rev Nephrol. 2010;6:667–78.
Rosin DL, Okusa MD. Risks inside: DAMP responses to wreck and cell dying in kidney illness. J Am Soc Nephrol. 2011;22:416–25.
Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and dying. Nat Immunol. 2022;23:487–500.
Vanpouille-Field C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors – therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019;18:845–67.
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural goal for novel kidney therapies. Nat Rev Drug Discov. 2021;20:770–88.
Cabrera LE, Schmotz C, Saleem MA, Lehtonen S, Vapalahti O, Vaheri A, Makela S, Mustonen J, Strandin T. Elevated heparanase ranges in urine throughout acute puumala orthohantavirus an infection are related to illness severity. Viruses. 2022;14:450.
Xu C, Chang A, Hack BK, Eadon MT, Alper SL, Cunningham PN. TNF-mediated injury to glomerular endothelium is a crucial determinant of acute kidney harm in sepsis. Kidney Int. 2014;85:72–81.
Jia Y, Pang C, Zhao Ok, Jiang J, Zhang T, Peng J, Solar P, Qian Y. Garcinol suppresses IL-1beta-induced chondrocyte irritation and osteoarthritis through inhibition of the NF-kappaB signaling pathway. Irritation. 2019;42:1754–66.
Chen Y, Lin L, Tao X, Music Y, Cui J, Wan J. The function of podocyte injury within the etiology of ischemia-reperfusion acute kidney harm and post-injury fibrosis. BMC Nephrol. 2019;20:106.
Zhu MM, Wang L, Yang D, Li C, Pang ST, Li XH, Li R, Yang B, Lian YP, Ma L, et al. Wedelolactone alleviates doxorubicin-induced irritation and oxidative stress injury of podocytes by IkappaK/IkappaB/NF-kappaB pathway. Biomed Pharmacother. 2019;117: 109088.
Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a possible goal in acute kidney harm. PeerJ. 2019;7: e8046.
Giam B, Kaye DM, Rajapakse NW. Function of renal oxidative stress within the pathogenesis of the cardiorenal syndrome. Coronary heart Lung Circ. 2016;25:874–80.
Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Work together. 2014;224:164–75.
Kishi S, Nagasu H, Kidokoro Ok, Kashihara N. Oxidative stress and the function of redox signalling in continual kidney illness. Nat Rev Nephrol. 2024;20:101–19.
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of particular reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23:499–515.
Zuk A, Bonventre JV. Acute kidney harm. Annu Rev Med. 2016;67:293–307.
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule restoration, AKI-CKD transition, and kidney illness development. J Am Soc Nephrol. 2015;26:1765–76.
Plotnikov E, Ciarimboli G. Editorial: mitochondria in renal well being and illness. Entrance Physiol. 2021;12: 707175.
Nath KA, Grande JP, Croatt AJ, Doubtless S, Hebbel RP, Enright H. Intracellular targets in heme protein-induced renal harm. Kidney Int. 1998;53:100–11.
Bhargava P, Schnellmann RG. Mitochondrial energetics within the kidney. Nat Rev Nephrol. 2017;13:629–46.
Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA. Mitochondrial pathology and glycolytic shift throughout proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol. 2016;27:3356–67.
Shimada Ok, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al. Oxidized mitochondrial DNA prompts the NLRP3 inflammasome throughout apoptosis. Immunity. 2012;36:401–14.
Paerewijck O, Lamkanfi M. The human inflammasomes. Mol Points Med. 2022;88: 101100.
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an outline of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328.
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Loss of life Dis. 2020;11:776.
Bedoui S, Herold MJ, Strasser A. Rising connectivity of programmed cell dying pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–95.
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell dying: suggestions of the nomenclature committee on cell dying 2018. Cell Loss of life Differ. 2018;25:486–541.
Wan J, Kalpage HA, Vaishnav A, Liu J, Lee I, Mahapatra G, Turner AA, Zurek MP, Ji Q, Moraes CT, et al. Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation. Sci Rep. 2019;9:15815.
Speidel D. Transcription-independent p53 apoptosis: another path to dying. Traits Cell Biol. 2010;20:14–24.
Harrington JS, Ryter SW, Plataki M, Worth DR, Choi AMK. Mitochondria in well being, illness, and getting older. Physiol Rev. 2023;103:2349–422.
Wang S, Lengthy H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human illnesses. Sign Transduct Goal Ther. 2023;8:304.
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular equipment of regulated cell dying. Cell Res. 2019;29:347–64.
Ichim G, Tait SW. A destiny worse than dying: apoptosis as an oncogenic course of. Nat Rev Most cancers. 2016;16:539–48.
Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional methods to dwell and die: cell dying and survival in growth, homeostasis, and illness. Annu Rev Cell Dev Biol. 2018;34:311–32.
Wu Y, Dong G, Sheng C. Concentrating on necroptosis in anticancer remedy: mechanisms and modulators. Acta Pharm Sin B. 2020;10:1601–18.
Fatemikia H, Seyedabadi M, Karimi Z, Tanha Ok, Assadi M, Tanha Ok. Comparability of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal fashions of acute kidney harm. Mol Cell Biochem. 2017;434:163–9.
Rizk DV, Meier D, Sandoval RM, Chacana T, Reilly ES, Seegmiller JC, DeNoia E, Strickland JS, Muldoon J, Molitoris BA. A novel technique for fast bedside measurement of GFR. J Am Soc Nephrol. 2018;29:1609–13.
Yan J, Wang Y, Zhang J, Liu X, Yu L, He Z. Quickly blocking the calcium overload/ros manufacturing suggestions loop to alleviate acute kidney harm through microenvironment-responsive BAPTA-AM/BAC co-delivery nanosystem. Small. 2023;19: e2206936.
Weisbord SD, Palevsky PM, Kaufman JS, Wu H, Androsenko M, Ferguson RE, Parikh CR, Bhatt DL, Gallagher M, Investigators PT. Distinction-associated acute kidney harm and severe antagonistic outcomes following angiography. J Am Coll Cardiol. 2020;75:1311–20.
Prowle JR, Forni LG, Bell M, Chew MS, Edwards M, Grams ME, Grocott MPW, Liu KD, McIlroy D, Murray PT, et al. Postoperative acute kidney harm in grownup non-cardiac surgical procedure: joint consensus report of the acute illness high quality initiative and perioperative high quality initiative. Nat Rev Nephrol. 2021;17:605–18.
Nadim MK, Forni LG, Mehta RL, Connor MJ Jr, Liu KD, Ostermann M, Rimmele T, Zarbock A, Bell S, Bihorac A, et al. COVID-19-associated acute kidney harm: consensus report of the twenty fifth acute illness high quality initiative (ADQI) workgroup. Nat Rev Nephrol. 2020;16:747–64.
Jentzer JC, Bihorac A, Brusca SB, Del Rio-Pertuz G, Kashani Ok, Kazory A, Kellum JA, Mao M, Moriyama B, Morrow DA, et al. Modern administration of extreme acute kidney harm and refractory cardiorenal syndrome: JACC council views. J Am Coll Cardiol. 2020;76:1084–101.
Wang L, Zhang Y, Li Y, Chen J, Lin W. Latest advances in engineered nanomaterials for acute kidney harm theranostics. Nano Res. 2020;14:920–33.
Messerer DAC, Halbgebauer R, Nilsson B, Pavenstadt H, Radermacher P, Huber-Lang M. Immunopathophysiology of trauma-related acute kidney harm. Nat Rev Nephrol. 2021;17:91–111.
Dixit M, Doan T, Kirschner R, Dixit N. Important acute kidney harm as a result of non-steroidal anti-inflammatory medicine: inpatient setting. Prescribed drugs. 2010;3:1279–85.
Bukowski RM. Amifostine (Ethyol): dosing, administration and affected person administration tips. Eur J Most cancers. 1996;32A(Suppl 4):S46-49.
Rushworth GF, Megson IL. Present and potential therapeutic makes use of for N-acetylcysteine: the necessity for conversion to intracellular glutathione for antioxidant advantages. Pharmacol Ther. 2014;141:150–9.
Hassanzadeh P, Atyabi F, Dinarvand R. Linkers: The important thing components for the creation of environment friendly nanotherapeutics. J Management Launch. 2018;270:260–7.
Choi HS, Liu W, Liu F, Nasr Ok, Misra P, Bawendi MG, Frangioni JV. Design issues for tumour-targeted nanoparticles. Nat Nanotechnol. 2010;5:42–7.
Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat Nanotechnol. 2017;12:1096–102.
Hua S, Wu SY. Editorial: advances and challenges in nanomedicine. Entrance Pharmacol. 2018;9:1397.
Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY. Superhydrophobic nanocoatings as intervention in opposition to biofilm-associated bacterial infections. Nanomaterials. 2021;11:1046.
Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal illness: present standing and future functions. Nat Rev Nephrol. 2016;12:738–53.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano primarily based drug supply methods: latest developments and future prospects. J Nanobiotechnology. 2018;16:71.
Williams RM, Shah J, Tian HS, Chen X, Geissmann F, Jaimes EA, Heller DA. Selective nanoparticle focusing on of the renal tubules. Hypertension. 2018;71:87–94.
Han SJ, Williams RM, D’Agati V, Jaimes EA, Heller DA, Lee HT. Selective nanoparticle-mediated focusing on of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney harm. Kidney Int. 2020;98:76–87.
Jiang D, Ge Z, Im HJ, England CG, Ni D, Hou J, Zhang L, Kutyreff CJ, Yan Y, Liu Y, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney harm. Nat Biomed Eng. 2018;2:865–77.
Hou J, Wang H, Ge Z, Zuo T, Chen Q, Liu X, Mou S, Fan C, Xie Y, Wang L. Treating acute kidney harm with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20:1447–54.
Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova Ok, Deen WM, Scheinberg DA, McDevitt MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA. 2010;107:12369–74.
Du B, Yu M, Zheng J. Transport and interactions of nanoparticles within the kidneys. Nat Rev Mater. 2018;3:358–74.
Miner JH. The glomerular basement membrane. Exp Cell Res. 2012;318:973–8.
Huang Y, Wang J, Jiang Ok, Chung EJ. Enhancing kidney focusing on: The affect of nanoparticle physicochemical properties on kidney interactions. J Management Launch. 2021;334:127–37.
Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a brand new frontier of bionanotechnology. Mater At present. 2013;16:477–86.
Balogh L, Nigavekar SS, Nair BM, Lesniak W, Zhang C, Sung LY, Kariapper MS, El-Jawahri A, Llanes M, Bolton B, et al. Important impact of dimension on the in vivo biodistribution of gold composite nanodevices in mouse tumor fashions. Nanomedicine. 2007;3:281–96.
Dolman ME, Harmsen S, Storm G, Hennink WE, Kok RJ. Drug focusing on to the kidney: advances within the lively focusing on of therapeutics to proximal tubular cells. Adv Drug Deliv Rev. 2010;62:1344–57.
Gu X-R, Liu Ok, Deng Y-X, Xiang B-X, Zhou L-Y, Yin W-J, Huang J-X, Meng Y-C, Li D-Ok, Que R-M, et al. A renal-targeted gene supply system derived from spermidine for arginase-2 silencing and synergistic attenuation of drug-induced acute kidney harm. Chem Eng J. 2024;486:150125.
Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted sialic acid-PEG-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney harm. Theranostics. 2017;7:2204–19.
Ding C, Wang B, Zheng J, Zhang M, Li Y, Shen HH, Guo Y, Zheng B, Tian P, Ding X, Xue W. Neutrophil membrane-inspired nanorobots act as antioxidants ameliorate ischemia reperfusion-induced acute kidney harm. ACS Appl Mater Interfaces. 2023;15:40292–303.
Yao S, Wu D, Hu X, Chen Y, Fan W, Mou X, Cai Y, Yang X. Platelet membrane-coated bio-nanoparticles of indocyanine inexperienced/elamipretide for NIR analysis and antioxidant remedy in acute kidney harm. Acta Biomater. 2024;173:482–94.
Shen Y, Yang F, Wu F, Zhang M, Deng B, Wu Z, Li J, Shen Y, Wang L, Ding F, Liu J. STING antagonist-loaded renal tubule epithelial cell-mimicking nanoparticles ameliorate acute kidney harm by orchestrating innate and adaptive immunity. Nano At present. 2024;55:102209.
Zhao S, Tian R, Wu J, Liu S, Wang Y, Wen M, Shang Y, Liu Q, Li Y, Guo Y, et al. A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis. Nat Commun. 2021;12:358.
Li J, Wei L, Zhang Y, Wu M. Tetrahedral DNA nanostructures inhibit ferroptosis and apoptosis in Cisplatin-induced renal harm. ACS Appl Bio Mater. 2021;4:5026–32.
Li W, Wang C, Lv H, Wang Z, Zhao M, Liu S, Gou L, Zhou Y, Li J, Zhang J, et al. A DNA nanoraft-based cytokine supply platform for alleviation of acute kidney harm. ACS Nano. 2021;15:18237–49.
Li H, Fan R, Zou B, Yan J, Shi Q, Guo G. Roles of MXenes in biomedical functions: latest developments and prospects. J Nanobiotechnology. 2023;21:73.
Zhao X, Wang LY, Li JM, Peng LM, Tang CY, Zha XJ, Ke Ok, Yang MB, Su BH, Yang W. Redox-mediated synthetic non-enzymatic antioxidant MXene Nanoplatforms for acute kidney harm alleviation. Adv Sci. 2021;8: e2101498.
Deng L, Xiao M, Wu A, He D, Huang S, Deng T, Xiao J, Chen X, Peng Y, Cao Ok. Se/Albumin nanoparticles for inhibition of ferroptosis in tubular epithelial cells throughout acute kidney harm. ACS Appl Nano Mater. 2022;5:227–36.
Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang DK, Xing C, Li Z, Dong B, et al. Novel idea of the sensible NIR-light-controlled drug launch of black phosphorus nanostructure for most cancers remedy. Proc Natl Acad Sci USA. 2018;115:501–6.
Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372–7.
Zhou W, Cui H, Ying L, Yu XF. Enhanced cytosolic supply and launch of CRISPR/Cas9 by black phosphorus nanosheets for genome modifying. Angew Chem Int Ed Engl. 2018;57:10268–72.
Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for environment friendly singlet oxygen technology. J Am Chem Soc. 2015;137:11376–82.
Ethordevic L, Arcudi F, Cacioppo M, Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and power functions. Nat Nanotechnol. 2022;17:112–30.
Wang H, Liu X, Yan X, Fan J, Li D, Ren J, Qu X. A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for bolstered sonodynamic remedy. Chem Sci. 2022;13:6704–14.
Wang H, Yu D, Fang J, Zhou Y, Li D, Liu Z, Ren J, Qu X. Phenol-like group functionalized graphene quantum dots structurally mimicking pure antioxidants for extremely environment friendly acute kidney harm remedy. Chem Sci. 2020;11:12721–30.
Zhu Z, Liu X, Li P, Wang H, Zhang Y, Liu M, Ren J. Renal clearable quantum dot-drug conjugates modulate labile iron species and scavenge free radicals for attenuating chemotherapeutic drug-induced acute kidney harm. ACS Appl Mater Interfaces. 2023;15:21854–65.
Kang T, Kim YG, Kim D, Hyeon T. Inorganic nanoparticles with enzyme-mimetic actions for biomedical functions. Coord Chem Rev. 2020;403:213092.
Zandieh M, Liu J. Nanozymes: definition, exercise, and mechanisms. Adv Mater. 2024;36: e2211041.
Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile uncommon earth nanomaterial for organic functions. NPG Asia Supplies. 2014;6:e90–e90.
Yang Y, Mao Z, Huang W, Liu L, Li J, Li J, Wu Q. Redox enzyme-mimicking actions of CeO(2) nanostructures: intrinsic affect of uncovered sides. Sci Rep. 2016;6:35344.
Heckert EG, Karakoti AS, Seal S, Self WT. The function of cerium redox state within the SOD mimetic exercise of nanoceria. Biomaterials. 2008;29:2705–9.
Gao X, Wang B, Li J, Niu B, Cao L, Liang XJ, Zhang J, Jin Y, Yang X. Catalytic tunable black phosphorus/ceria nanozyme: a flexible oxidation cycle accelerator for assuaging cisplatin-induced acute kidney harm. Adv Healthc Mater. 2023;12: e2301691.
Ni D, Jiang D, Kutyreff CJ, Lai J, Yan Y, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney harm in mice. Nat Commun. 2018;9:5421.
Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat Commun. 2020;11:2788.
Pan J, Wu T, Chen L, Chen X, Zhang C, Wang Y, Li H, Guo J, Jiang W. A bimetallic nanozyme coordinated with quercetin for environment friendly radical scavenging and remedy of acute kidney harm. Nanoscale. 2024;16:2955–65.
Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive oxygen species- and cell-free DNA-scavenging Mn(3)O(4) nanozymes for acute kidney harm remedy. ACS Appl Mater Interfaces. 2022;14:50649–63.
Liu J, Huang X, Zhang F, Luo X, Yu W, Li C, Qiu Z, Liu Y, Xu Z. Metallic-free multifunctional nanozymes mimicking endogenous antioxidant system for acute kidney harm alleviation. Chem Eng J. 2023;477:147048.
Zhao X, Solar J, Dong J, Guo C, Cai W, Han J, Shen H, Lv S, Zhang R. An auto-photoacoustic melanin-based drug supply nano-platform for self-monitoring of acute kidney harm remedy through a triple-collaborative technique. Acta Biomater. 2022;147:327–41.
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.
Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Proof of RNAi in people from systemically administered siRNA through focused nanoparticles. Nature. 2010;464:1067–70.
Castanotto D, Rossi JJ. The guarantees and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457:426–33.
Kanasty R, Dorkin JR, Vegas A, Anderson D. Supply supplies for siRNA therapeutics. Nat Mater. 2013;12:967–77.
Alidori S, Akhavein N, Thorek DL, Behling Ok, Romin Y, Queen D, Beattie BJ, Manova-Todorova Ok, Bergkvist M, Scheinberg DA, McDevitt MR. Focused fibrillar nanocarbon RNAi remedy of acute kidney harm. Sci Transl Med. 2016;8:331ra339.
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Most cancers. 2006;6:857–66.
Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in most cancers. Sci Sign. 2015;8:re3.
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread modifications in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.
Zhang S, Solar H, Kong W, Zhang B. Useful function of microRNA-500a-3P-loaded liposomes within the remedy of cisplatin-induced AKI. IET Nanobiotechnol. 2020;14:465–9.
Liu S, Zhao M, Zhou Y, Li L, Wang C, Yuan Y, Li L, Liao G, Bresette W, Chen Y, et al. A self-assembling peptide hydrogel-based drug co-delivery platform to enhance tissue restore after ischemia-reperfusion harm. Acta Biomater. 2020;103:102–14.
Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, Yu H, Wang J, Solar M, You Y, et al. ROS-responsive chitosan-SS31 prodrug for AKI remedy through fast distribution within the kidney and long-term retention within the renal tubule. Sci Adv. 2020. https://doi.org/10.1126/sciadv.abb7422.
Solar J, Zhao X, Shen H, Dong J, Rong S, Cai W, Zhang R. CD44-targeted melanin-based nanoplatform for alleviation of ischemia/reperfusion-induced acute kidney harm. J Management Launch. 2024;368:1–14.
Nie Y, Wang L, Liu S, Dai C, Cui T, Lei Y, You X, Wang X, Wu J, Zheng Z. Pure ursolic acid primarily based self-therapeutic polymer as nanocarrier to ship pure resveratrol for pure remedy of acute kidney harm. J Nanobiotechnology. 2023;21:484.
Li Y, Wang G, Wang T, Li C, Zhang X, Li J, Wang Y, Liu N, Chen J, Su X. PEGylated gambogic acid nanoparticles allow environment friendly renal-targeted remedy of acute kidney harm. Nano Lett. 2023;23:5641–7.
Smith AM, Mancini MC, Nie S. Second window for in vivo imaging. Nat Nanotechnol. 2009;4:710–1.
Yan L, Gu Q-S, Jiang W-L, Tan M, Tan Z-Ok, Mao G-J, Xu F, Li C-Y. Close to-infrared fluorescent probe with massive stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal Chem. 2022;94:5514–20.
Ma X, Huang Y, Abedi SAA, Kim H, Davin TTB, Liu X, Yang W-C, Solar Y, Liu SH, Yin J, et al. Rational design and utility of an indolium-derived heptamethine cyanine with record-long second near-infrared emission. CCS Chemistry. 2022;4:1961–76.
Liu H, Li C, Qian Y, Hu L, Fang J, Tong W, Nie R, Chen Q, Wang H. Magnetic-induced graphene quantum dots for imaging-guided photothermal remedy within the second near-infrared window. Biomaterials. 2020;232: 119700.
Geng B, Shen W, Fang F, Qin H, Li P, Wang X, Li X, Pan D, Shen L. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion within the NIR-II window with excessive effectivity. Carbon. 2020;162:220–33.
Gao P, Hui H, Guo C, Liu Y, Su Y, Huang X, Guo Ok, Shang W, Jiang J, Tian J. Renal clearing carbon dots-based near-infrared fluorescent super-small nanoprobe for renal imaging. Carbon. 2023;201:805–14.
Li J, Fu C, Feng B, Liu Q, Gu J, Khan MN, Solar L, Wu H, Wu H. Polyacrylic acid-coated selenium-doped carbon dots inhibit ferroptosis to alleviate chemotherapy-associated acute kidney harm. Adv Sci. 2024;11: e2400527.
Geng B, Shen W, Li P, Fang F, Qin H, Li XK, Pan D, Shen L. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic most cancers remedy within the NIR-II window. ACS Appl Mater Interfaces. 2019;11:44949–60.
Zhang W, Shen Z, Wu Y, Zhang W, Zhang T, Yu BY, Zheng X, Tian J. Renal-clearable and biodegradable black phosphorus quantum dots for photoacoustic imaging of kidney dysfunction. Anal Chim Acta. 2022;1204: 339737.
Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D, et al. Multicolor spectral karyotyping of human chromosomes. Science (New York, NY). 1996;273:494–7.
Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS. Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res. 2014;47:3481–93.
Ye M, Zhang J, Jiang D, Tan Q, Li J, Yao C, Zhu C, Zhou Y. A hemicyanine-assembled upconversion nanosystem for nir-excited visualization of carbon monoxide bio-signaling In Vivo. Small. 2022;18: e2202263.
Zhu H, Chen Y, Yan F-J, Chen J, Tao X-F, Ling J, Yang B, He Q-J, Mao Z-W. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor remedy. Acta Biomater. 2017;50:534–45.
Ding X, Liow CH, Zhang M, Huang R, Li C, Shen H, Liu M, Zou Y, Gao N, Zhang Z, et al. Floor plasmon resonance enhanced gentle absorption and photothermal remedy within the second near-infrared window. J Am Chem Soc. 2014;136:15684–93.
Zhao Z, He Ok, Liu B, Nie W, Luo X, Liu J. Intrarenal pH-responsive self-assembly of luminescent gold nanoparticles for analysis of early kidney harm. Angewandte Chem Int Edn. 2024;63:e202406016.
Wang Y, Yang F, Zhang HX, Zi XY, Pan XH, Chen F, Luo WD, Li JX, Zhu HY, Hu YP. Cuprous oxide nanoparticles inhibit the expansion and metastasis of melanoma by focusing on mitochondria. Cell Loss of life Dis. 2013;4:e783–e783.
Grasp Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic performance for point-of-caring sensing, bio-imaging and medical remedy. Chem Soc Rev. 2024;53:2932–71.
Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and easy methods to overcome it. Nat Nanotechnol. 2018;13:65–71.
Ding M, Zhang Y, Li X, Li Q, Xiu W, He A, Dai Z, Dong H, Shan J, Mou Y. Simultaneous biofilm disruption, bacterial killing, and irritation elimination for wound remedy utilizing silver embellished polydopamine nanoplatform. Small. 2024;10:e2400927.
Montaseri H, Kruger CA, Abrahamse H. Latest advances in porphyrin-based inorganic nanoparticles for most cancers remedy. Int J Mol Sci. 2020;21:3358.
Pucelik B, Sułek A, Drozd A, Stochel G, Pereira MM, Pinto SMA, Arnaut LG, Dąbrowski JM. Enhanced mobile uptake and photodynamic impact with amphiphilic fluorinated porphyrins: the function of sulfoester teams and the character of reactive oxygen species. Int J Mol Sci. 2020;21:2786.
Jin CS, Cui L, Wang F, Chen J, Zheng G. Concentrating on-triggered porphysome nanostructure disruption for activatable photodynamic remedy. Adv Healthcare Mater. 2014;3:1240–9.
Zhao H, Wang Y, Chen Q, Liu Y, Gao Y, Müllen Ok, Li S, Narita A. A nanographene-porphyrin hybrid for near-infrared-Ii phototheranostics. Adv Sci. 2024;11:e2309131.
Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic remedy. J Enzyme Inhib Med Chem. 2020;35:1080–99.
Cheng Y-Q, Yue Y-X, Cao H-M, Geng W-C, Wang L-X, Hu X-Y, Li H-B, Bian Q, Kong X-L, Liu J-F, et al. Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for focused kidney harm imaging and remedy. Journal of Nanobiotechnology. 2021;19:451.
Li J, Rao J, Pu Ok. Latest progress on semiconducting polymer nanoparticles for molecular imaging and most cancers phototherapy. Biomaterials. 2018;155:217–35.
A DFT/TDDFT interpretation of the bottom and excited states of porphyrin and porphyrazine complexes. Coord Chem Rev, 230: 5–27.
Korzdorfer T, Bredas JL. Natural digital supplies: latest advances within the DFT description of the bottom and excited states utilizing tuned range-separated hybrid functionals. Acc Chem Res. 2014;47:3284–91.
Verbeek FP, Schaafsma BE, Tummers QR, van der Vorst JR, van der Made WJ, Baeten CI, Bonsing BA, Frangioni JV, van de Velde CJ, Vahrmeijer AL, Swijnenburg RJ. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgical procedure. Surg Endosc. 2014;28:1076–82.
Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.
Li Q, Ding Q, Li Y, Zeng X, Liu Y, Lu S, Zhou H, Wang X, Wu J, Meng X, et al. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem Commun. 2020;56:3289–92.
Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, Zheng J, Yang B, Qin W, Zhang X, Wu C. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew Chem Int Ed Engl. 2020;59:3691–8.
Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human medical trial in breast most cancers sentinel lymph node mapping. Ann Surg Oncol. 2009;16:2943–52.
Tummers QR, Schepers A, Hamming JF, Kievit J, Frangioni JV, van de Velde CJ, Vahrmeijer AL. Intraoperative steerage in parathyroid surgical procedure utilizing near-infrared fluorescence imaging and low-dose methylene blue. Surgical procedure. 2015;158:1323–30.
Verbeek FP, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Intraoperative close to infrared fluorescence guided identification of the ureters utilizing low dose methylene blue: a primary in human expertise. J Urol. 2013;190:574–9.
Tanaka E, Chen FY, Flaumenhaft R, Graham GJ, Laurence RG, Frangioni JV. Actual-time evaluation of cardiac perfusion, coronary angiography, and acute intravascular thrombi utilizing dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg. 2009;138:133–40.
Verbeek FP, Tummers QR, Rietbergen DD, Peters AA, Schaafsma BE, van de Velde CJ, Frangioni JV, van Leeuwen FW, Gaarenstroom KN, Vahrmeijer AL. Sentinel lymph node biopsy in vulvar most cancers utilizing mixed radioactive and fluorescence steerage. Int J Gynecol Most cancers. 2015;25:1086–93.
Hussain T, Nguyen QT. Molecular imaging for most cancers analysis and surgical procedure. Adv Drug Deliv Rev. 2014;66:90–100.
He X, Gao J, Gambhir SS, Cheng Z. Close to-infrared fluorescent nanoprobes for most cancers molecular imaging: standing and challenges. Traits Mol Med. 2010;16:574–83.
de Boer E, Harlaar NJ, Taruttis A, Nagengast WB, Rosenthal EL, Ntziachristos V, van Dam GM. Optical improvements in surgical procedure. Br J Surg. 2015;102:e56-72.
Wang F, Wan H, Ma Z, Zhong Y, Solar Q, Tian Y, Qu L, Du H, Zhang M, Li L, et al. Gentle-sheet microscopy within the near-infrared II window. Nat Strategies. 2019;16:545–52.
Dang X, Bardhan NM, Qi J, Gu L, Eze NA, Lin CW, Kataria S, Hammond PT, Belcher AM. Deep-tissue optical imaging of close to cellular-sized options. Sci Rep. 2019;9:3873.
Wang Z, Yu Y, Wu Y, Gao S, Hu L, Jian C, Qi B, Yu A. Dynamically monitoring lymphatic and vascular methods in physiological and pathological circumstances of a swine mannequin through a conveyable NIR-II imaging system with ICG. Int J Med Sci. 2022;19:1864–74.
Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Solar X, Shi X, Li C, et al. First-in-human liver-tumour surgical procedure guided by multispectral fluorescence imaging within the seen and near-infrared-I/II home windows. Nat Biomed Eng. 2020;4:259–71.
Cai Z, Zhu L, Wang M, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics. 2020;10:4265–76.
Welsher Ok, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A path to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4:773–80.
Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging utilizing near-infrared II fluorescence. Nat Med. 2012;18:1841–6.
Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. In vivo fluorescence imaging with Ag2S quantum dots within the second near-infrared area. Angew Chem Int Ed Engl. 2012;51:9818–21.
Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ, et al. Subsequent-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017. https://doi.org/10.1038/s41551-017-0056.
Bandi VG, Luciano MP, Saccomano M, Patel NL, Bischof TS, Lingg JGP, Tsrunchev PT, Nix MN, Ruehle B, Sanders C, et al. Focused multicolor in vivo imaging over 1000 nm enabled by nonamethine cyanines. Nat Strategies. 2022;19:353–8.
Wang S, Fan Y, Li D, Solar C, Lei Z, Lu L, Wang T, Zhang F. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun. 2019;10:1058.
Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically accepted near-infrared dye indocyanine inexperienced. Proc Natl Acad Sci USA. 2018;115:4465–70.
Oliinyk OS, Ma C, Pletnev S, Baloban M, Taboada C, Sheng H, Yao J, Verkhusha VV. Deep-tissue SWIR imaging utilizing rationally designed small red-shifted near-infrared fluorescent protein. Nat Strategies. 2023;20:70–4.
Chen M, Feng Z, Fan X, Solar J, Geng W, Wu T, Sheng J, Qian J, Xu Z. Lengthy-term monitoring of intravital organic processes utilizing fluorescent protein-assisted NIR-II imaging. Nat Commun. 2022;13:6643.
Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, Zhao X, Li J, Du H, Zhang M, et al. In vivo molecular imaging for immunotherapy utilizing ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol. 2019;37:1322–31.
Wang R, Li X, Zhou L, Zhang F. Epitaxial seeded development of rare-earth nanocrystals with environment friendly 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed Engl. 2014;53:12086–90.
Wang R, Zhou L, Wang W, Li X, Zhang F. In vivo gastrointestinal drug-release monitoring by means of second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:14702.
Baghdasaryan A, Wang F, Ren F, Ma Z, Li J, Zhou X, Grigoryan L, Xu C, Dai H. Phosphorylcholine-conjugated gold-molecular clusters enhance sign for Lymph Node NIR-II fluorescence imaging in preclinical most cancers fashions. Nat Commun. 2022;13:5613.
Ma H, Zhang X, Liu L, Huang Y, Solar S, Chen Ok, Xin Q, Liu P, Yan Y, Wang Y, et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute irritation inhibition. Sci Adv. 2023;9:eadh7828.
Ji A, Lou H, Qu C, Lu W, Hao Y, Li J, Wu Y, Chang T, Chen H, Cheng Z. Acceptor engineering for NIR-II dyes with excessive photochemical and biomedical efficiency. Nat Commun. 2022;13:3815.
Antaris AL, Chen H, Cheng Ok, Solar Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.
Zhu S, Yang Q, Antaris AL, Yue J, Ma Z, Wang H, Huang W, Wan H, Wang J, Diao S, et al. Molecular imaging of organic methods with a clickable dye within the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci USA. 2017;114:962–7.
Tian R, Feng X, Wei L, Dai D, Ma Y, Pan H, Ge S, Bai L, Ke C, Liu Y, et al. A genetic engineering technique for modifying near-infrared-II fluorophores. Nat Commun. 2022;13:2853.
Hu X, Zhu C, Solar F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Technique towards potentiated NIR-II fluorescence bioimaging of molecular fluorophores. Adv Mater. 2024;36: e2304848.
Chen W, Cheng CA, Cosco ED, Ramakrishnan S, Lingg JGP, Bruns OT, Zink JI, Sletten EM. Shortwave infrared imaging with J-aggregates stabilized in hole mesoporous silica nanoparticles. J Am Chem Soc. 2019;141:12475–80.
Zhong Y, Dai H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of organic methods. Nano Res. 2020;13:1281–94.
Wang F, Jiang X, Xiang H, Wang N, Zhang Y, Yao X, Wang P, Pan H, Yu L, Cheng Y, et al. An inherently kidney-targeting near-infrared fluorophore primarily based probe for early detection of acute kidney harm. Biosens Bioelectron. 2021;172: 112756.
Yang W, Liu R, Yin X, Jin Y, Wang L, Dong M, Wu Ok, Yan Z, Fan G, Tang Z, et al. Peroxynitrite activated near-infrared fluorescent probe for evaluating ferroptosis-mediated acute kidney harm. Sensors Actuators B Chem. 2023;393:134180.
Ding Y, Zhong R, Jiang R, Yang X, He L, Yuan L, Cheng D. Redox-reversible near-infrared fluorescent probe for imaging of acute kidney oxidative harm and treatment. ACS Sens. 2023;8:914–22.
Liu L, Jiang L, Yuan W, Liu Z, Liu D, Wei P, Zhang X, Yi T. Twin-Modality detection of early-stage drug-induced acute kidney harm by an activatable probe. ACS Sens. 2020;5:2457–66.
Ding F, Zhang S, Liu S, Feng J, Li J, Li Q, Ge Z, Zuo X, Fan C, Xia Q. Molecular visualization of early-stage acute kidney harm with a DNA framework nanodevice. Adv Sci. 2022;9: e2105947.
Weng J, Wang Y, Zhang Y, Ye D. An activatable near-infrared fluorescence probe for in vivo imaging of acute kidney harm by focusing on phosphatidylserine and caspase-3. J Am Chem Soc. 2021;143:18294–304.
Tian Z, Yan F, Tian X, Feng L, Cui J, Deng S, Zhang B, Xie T, Huang S, Ma X. A NIR fluorescent probe for Vanin-1 and its functions in imaging, kidney harm analysis, and the event of inhibitor. Acta Pharm Sin B. 2022;12:316–25.
Jiang S, Hong J, Gong S, Li Q, Feng G. Kidney-targeted near-infrared fluorescence probe reveals that SO(2) is a biomarker for cisplatin-induced acute kidney harm. Anal Chem. 2023;95:12948–55.
Li S, Yang N, Ma Q, Li S, Tong S, Luo J, Music X, Yang H. Tailoring oxidation responsiveness of gold nanoclusters through ligand engineering for imaging acute kidney harm. Anal Chem. 2023;95:16153–9.
Zhao Z, Chen H, He Ok, Lin J, Cai W, Solar Y, Liu J. Glutathione-activated emission of ultrasmall gold nanoparticles within the second near-infrared window for imaging of early kidney harm. Anal Chem. 2023;95:5061–8.
Yi S, Hu Q, Chi Y, Qu H, Xiao Y. Vibrant and renal-clearable au nanoclusters with NIR-II excitation and emission for high-resolution fluorescence imaging of kidney dysfunction. ACS Supplies Letters. 2023;5:2164–73.
Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A promising NIR-II fluorescent sensor for peptide-mediated long-term monitoring of kidney dysfunction. Angew Chem Int Ed Engl. 2021;60:15809–15.
Zeng C, Tan Y, Solar L, Lengthy Y, Zeng F, Wu S. Renal-clearable probe with water solubility and photostability for biomarker-activatable detection of acute kidney accidents through NIR-II fluorescence and optoacoustic imaging. ACS Appl Mater Interfaces. 2023;15:17664–74.
Tan J, Yin Ok, Ouyang Z, Wang R, Pan H, Wang Z, Zhao C, Guo W, Gu X. Actual-time monitoring renal impairment as a result of drug-induced AKI and diabetes-caused CKD utilizing an NAG-activatable NIR-II nanoprobe. Anal Chem. 2021;93:16158–65.
Zhu D, Zhang H, Li J, Qian X, Guo M, Jiang G, Gu Y. Liposome-mediated biomimetic supply of PLK3 inhibitor with NIR II-triggered launch prevents renal ischemia-reperfusion harm. Adv Ther. 2022;5:2200087.
He Ok, Ding YF, Zhao Z, Liu B, Nie W, Luo X, Yu HZ, Liu J, Wang R. Cucurbit[7]uril-mediated organ-specific supply of ultrasmall NIR-II luminescent gold nanocarriers for remedy of acute kidney harm. Adv Func Mater. 2023;34:2309949.
Huang Y, Chen Ok, Liu L, Ma H, Zhang X, Tan Ok, Li Y, Liu Y, Liu C, Wang H, Zhang XD. Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney harm. Small. 2023;19: e2300145.
Ge X, Su L, Yang L, Fu Q, Li Q, Zhang X, Liao N, Yang H, Music J. NIR-II fluorescent biodegradable nanoprobes for exact acute kidney/liver harm imaging and remedy. Anal Chem. 2021;93:13893–903.
Xu Y, Zhang Q, Chen R, Cao H, Tang J, Wu Y, Lu X, Chu B, Music B, Wang H, He Y. NIR-II photoacoustic-active DNA origami nanoantenna for early analysis and sensible remedy of acute kidney harm. J Am Chem Soc. 2022;144:23522–33.
Gao H, Solar L, Li J, Zhou Q, Xu H, Ma XN, Li R, Yu BY, Tian J. Illumination of hydroxyl radical in kidney harm and high-throughput screening of pure protectants utilizing a fluorescent/photoacoustic probe. Adv Sci. 2023;10: e2303926.