[HTML payload içeriği buraya]
28.3 C
Jakarta
Monday, November 25, 2024

High quality tuning of CpG spatial distribution with DNA origami for improved most cancers vaccination


  • Sahin, U. & Tureci, O. Customized vaccines for most cancers immunotherapy. Science 359, 1355–1360 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA through species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bode, C., Zhao, G., Steinhagen, F., Kinjo, T. & Klinman, D. M. CpG DNA as a vaccine adjuvant. Professional Rev. Vaccines 10, 499–511 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klinman, D. M., Sato, T. & Shimosato, T. Use of nanoparticles to ship immunomodulatory oligonucleotides. WIREs Nanomed. Nanobiotechnol. 8, 631–637 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schuller, V. J. et al. Mobile immunostimulation by CpG-sequence-coated DNA origami buildings. ACS Nano 5, 9696–9702 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in growth and most cancers. Nat. Rev. Most cancers 12, 387–400 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, A. et al. Spatial management of membrane receptor operate utilizing ligand nanocalipers. Nat. Strategies 11, 841–846 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, P. S. et al. Designer DNA structure gives exact and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pulendran, B. & Ahmed, R. Translating innate immunity into immunological reminiscence: implications for vaccine growth. Cell 124, 849–863 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohto, U. et al. Structural foundation of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leleux, J. A., Pradhan, P. & Roy, Ok. Biophysical attributes of CpG presentation management TLR9 signaling to differentially polarize systemic immune responses. Cell Rep. 18, 700–710 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, N. W. et al. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation. Nat. Mater. 14, 696–700 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E. Y. et al. A overview of immune amplification through ligand clustering by self-assembled liquid-crystalline DNA complexes. Adv. Colloid Interface Sci. 232, 17–24 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comberlato, A., Koga, M. M., Nussing, S., Parish, I. A. & Bastings, M. M. C. Spatially managed activation of Toll-like receptor 9 with DNA-based nanomaterials. Nano Lett. 22, 2506–2513 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, R. R. et al. Innate immune stimulation utilizing 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, M., Denardo, D. G. & Coussens, L. M. Polarized immune responses differentially regulate most cancers growth. Immunol. Rev. 222, 145–154 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yew, N. S. et al. CpG-depleted plasmid DNA vectors with enhanced security and long-term gene expression in vivo. Mol. Ther. 5, 731–738 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, V. et al. DNA nanotechnology for most cancers remedy. Theranostics 6, 710–725 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udomprasert, A. & Kangsamaksin, T. DNA origami purposes in most cancers remedy. Most cancers Sci. 108, 1535–1543 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. A DNA nanorobot features as a most cancers therapeutic in response to a molecular set off in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors utilizing DNA origami promotes phagocytosis. eLife 10, e68311 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, R. M. L. et al. Nanoscale FasL group on DNA origami to decipher apoptosis sign activation in cells. Small 17, e2101678 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity buildings from DNA. Nat. Nanotechnol. 5, 520–524 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, W. M. Exploiting weak interactions in DNA self-assembly. Science 347, 1417–1418 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H. et al. Enhanced and extended cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, Y. et al. Antigen-capturing nanoparticles enhance the abscopal impact and most cancers immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chesson, C. B. & Zloza, A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy remedies of most cancers. Nanomedicine 12, 2693–2706 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anastassacos, F. M., Zhao, Z., Zeng, Y. & Shih, W. M. Glutaraldehyde cross-linking of oligolysines coating DNA origami enormously reduces susceptibility to nuclease degradation. J. Am. Chem. Soc. 142, 3311–3315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucas, C. R. et al. DNA origami nanostructures elicit dose-dependent immunogenicity and are unhazardous as much as excessive doses in vivo. Small 18, e2108063 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wamhoff, E. C. et al. Analysis of nonmodified wireframe DNA origami for acute toxicity and biodistribution in mice. ACS Appl. Bio. Mater. 6, 1960–1969 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas, S. M. et al. Speedy prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Njongmeta, L. M. et al. CD205 antigen concentrating on mixed with dendritic cell recruitment components and antigen-linked CD40L activation primes and expands vital antigen-specific antibody and CD4(+) T cell responses following DNA vaccination of outbred animals. Vaccine 30, 1624–1635 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahoud, M. H. et al. DEC-205 is a cell floor receptor for CpG oligonucleotides. Proc. Natl Acad. Sci. USA 109, 16270–16275 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, C. X. et al. AAV2/IL-12 gene supply into dendritic cells (DC) enhances CTL stimulation above different IL-12 purposes: proof for IL-12 intracrine exercise in DC. Oncoimmunology 1, 847–855 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heo, M. B., Kim, S. Y., Yun, W. S. & Lim, Y. T. Sequential supply of an anticancer drug and mixed immunomodulatory nanoparticles for environment friendly chemoimmunotherapy. Int J. Nanomed. 10, 5981–5992 (2015).

    CAS 

    Google Scholar
     

  • Scheuerpflug, A. et al. The position of dendritic cells for remedy of B-cell lymphoma with immune checkpoint inhibitors. Most cancers Immunol. Immunother. 70, 1343–1350 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keestra, A. M., de Zoete, M. R., Bouwman, L. I. & van Putten, J. P. Rooster TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J. Immunol. 185, 460–467 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oldenburg, M. et al. TLR13 acknowledges bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337, 1111–1115 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spies, B. et al. Vaccination with plasmid DNA prompts dendritic cells through Toll-like receptor 9 (TLR9) however features in TLR9-deficient mice. J. Immunol. 171, 5908–5912 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D. et al. ‘Immunomers’–novel 3′-3′-linked CpG oligodeoxyribonucleotides as potent immunomodulatory brokers. Nucleic Acids Res. 30, 4460–4469 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minari, J., Mochizuki, S. & Sakurai, Ok. Enhanced cytokine secretion owing to a number of CpG aspect chains of DNA duplex. Oligonucleotides 18, 337–344 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, L. Ok. et al. Interleukin-10 instantly inhibits CD8(+) T cell operate by enhancing N-glycan branching to lower antigen sensitivity. Immunity 48, 299–312 e295 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, A. W. et al. A facile strategy to reinforce antigen response for personalised most cancers vaccination. Nat. Mater. 17, 528–534 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to most cancers. Nature 520, 692–696 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toubi, E. & Shoenfeld, Y. Protecting autoimmunity in most cancers (overview). Oncol. Rep. 17, 245–251 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Ke, Y., Voigt, N. V., Gothelf, Ok. V. & Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR construction willpower. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue tradition. ACS Nano 8, 8765–8775 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles