Blanco, E., Shen, H. & Ferrari, M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).
Chou, L. Y. T., Ming, Okay. & Chan, W. C. W. Methods for the intracellular supply of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).
Duncan, R. & Richardson, S. C. W. Endocytosis and intracellular trafficking as gateways for nanomedicine supply: alternatives and challenges. Mol. Pharm. 9, 2380–2402 (2012).
Iversen, T.-G., Skotland, T. & Sandvig, Okay. Endocytosis and intracellular transport of nanoparticles: current data and wish for future research. Nano Right now 6, 176–185 (2011).
Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key ideas and strategies for finding out the endocytosis of organic and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).
Francia, V. et al. Corona composition can have an effect on the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).
Iversen, T. G., Frerker, N. & Sandvig, Okay. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J. Nanobiotechnol. 10, 33 (2012).
Sharma, S., Bartholdson, S. J., Sofa, A. C. M., Yusa, Okay. & Wright, G. J. Genome-scale identification of mobile pathways required for cell floor recognition. Genome Res. 28, 1372–1382 (2018).
Collinet, C. et al. Techniques survey of endocytosis by multiparametric picture evaluation. Nature 464, 243–249 (2010).
Carette, J. E. et al. Haploid genetic screens in human cells establish host components utilized by pathogens. Science 326, 1231–1235 (2009).
Navarro Negredo, P. et al. Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. J. Cell Biol. 216, 2927–2943 (2017).
Jae, L. T. et al. Deciphering the glycosylome of dystroglycanopathies utilizing haploid screens for lassa virus entry. Science 340, 479–483 (2013).
Duncan, L. M. et al. Fluorescence-based phenotypic choice permits ahead genetic screens in haploid human cells. PLoS ONE 7, e39651 (2012).
Davis, E. M. et al. Comparative haploid genetic screens reveal divergent pathways within the biogenesis and trafficking of glycophosphatidylinositol-anchored proteins. Cell Rep. 11, 1727–1736 (2015).
Luteijn, R. D. et al. A genome-wide haploid genetic display identifies heparan sulfate-associated genes and the macropinocytosis modulator TMED10 as components supporting vaccinia virus an infection. J. Virol. 93, e02160-18 (2019).
Carette, J. E. et al. Ebola virus entry requires the ldl cholesterol transporter Niemann–Decide C1. Nature 477, 340–343 (2011).
Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).
Riblett, A. M. et al. A haploid genetic display identifies heparan sulfate proteoglycans supporting Rift Valley fever virus an infection. J. Virol. 90, 1414–1423 (2016).
Pillay, S. et al. A vital receptor for adeno-associated virus an infection. Nature 530, 108–112 (2016).
Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).
Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medicine. Nat. Nanotechnol. 14, 1084–1087 (2019).
Liu, Okay. et al. Multiomics evaluation of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is critical for his or her perform. Nat. Commun. 14, 4007 (2023).
Rees, P., Wills, J. W., Brown, M. R., Barnes, C. M. & Summers, H. D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun. 10, 2341 (2019).
Panet, E. et al. The interface of nanoparticles with proliferating mammalian cells. Nat. Nanotechnol. 12, 598–600 (2017).
Åberg, C., Piattelli, V., Montizaan, D. & Salvati, A. Sources of variability in nanoparticle uptake by cells. Nanoscale 13, 17530–17546 (2021).
Christianson, H. C., Svensson, Okay. J., van Kuppevelt, T. H., Li, J. P. & Belting, M. Most cancers cell exosomes depend upon cell-surface heparan sulfate proteoglycans for his or her internalization and practical exercise. Proc. Natl Acad. Sci. USA 110, 17380–17385 (2013).
Joshi, B. S. & Zuhorn, I. S. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–mind barrier mannequin. Eur. J. Neurosci. 53, 706–719 (2021).
Panarella, A. et al. A scientific high-content screening microscopy strategy reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells. Sci. Rep. 6, 28865 (2016).
Hofmann, D. et al. Mass spectrometry and imaging evaluation of nanoparticle-containing vesicles present a mechanistic perception into mobile trafficking. ACS Nano 8, 10077–10088 (2014).
Shapero, Okay. et al. Time and area resolved uptake examine of silica nanoparticles by human cells. Mol. BioSyst. 7, 371–378 (2011).
Turnbull, J., Powell, A. & Guimond, S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Traits Cell Biol. 11, 75–82 (2001).
Martinez, P. et al. Macrophage polarization alters the expression and sulfation sample of glycosaminoglycans. Glycobiology 25, 502–513 (2015).
Thomas, M. & Klibanov, A. M. Non-viral gene remedy: polycation-mediated DNA supply. Appl. Microbiol. Biotechnol. 62, 27–34 (2003).
Favretto, M. E., Wallbrecher, R., Schmidt, S., van de Putte, R. & Brock, R. Glycosaminoglycans within the mobile uptake of drug supply vectors—bystanders or lively gamers? J. Management. Launch 180, 81–90 (2014).
Olivieri, P. H., Jesus, M. B., Nader, H. B., Justo, G. Z. & Sousa, A. A. Cell-surface glycosaminoglycans regulate the mobile uptake of charged polystyrene nanoparticles. Nanoscale 14, 7350–7363 (2022).
Christianson, H. C. & Belting, M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 35, 51–55 (2014).
Zhang, Q. et al. Heparan sulfate assists SARS-CoV-2 in cell entry and may be focused by permitted medicine in vitro. Cell Discov. 6, 80 (2020).
Stanford, Okay. I. et al. Syndecan-1 is the first heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Make investments. 119, 3236–3245 (2009).
Williams, Okay. J. & Fuki, I. V. Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism. Curr. Opin. Lipidol. 8, 253–262 (1997).
Shen, W. J., Asthana, S., Kraemer, F. B. & Azhar, S. Scavenger receptor B sort 1: expression, molecular regulation, and ldl cholesterol transport perform. J. Lipid Res. 59, 1114–1131 (2018).
Kolset, S. O. & Salmivirta, M. Cell floor heparan sulfate proteoglycans and lipoprotein metabolism. Cell. Mol. Life Sci. 56, 857–870 (1999).
Lesniak, A. et al. Nanoparticle adhesion to the cell membrane and its impact on nanoparticle uptake effectivity. J. Am. Chem. Soc. 135, 1438–1444 (2013).
Yang, Okay., Mesquita, B., Horvatovich, P. & Salvati, A. Tuning liposome composition to modulate corona formation in human serum and mobile uptake. Acta Biomater. 106, 314–327 (2020).
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ focusing on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat. Nanotechnol. 15, 313–320 (2020).
Ritz, S. et al. Protein corona of nanoparticles: distinct proteins regulate the mobile uptake. Biomacromolecules 16, 1311–1321 (2015).
Jones, A. L., Hulett, M. D. & Parish, C. R. Histidine-rich glycoprotein binds to cell-surface heparan sulfate by way of its N-terminal area following Zn2+ chelation. J. Biol. Chem. 279, 30114–30122 (2004).