[HTML payload içeriği buraya]
26.6 C
Jakarta
Monday, November 25, 2024

Genome-wide ahead genetic screening to establish receptors and proteins mediating nanoparticle uptake and intracellular processing


  • Blanco, E., Shen, H. & Ferrari, M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, L. Y. T., Ming, Okay. & Chan, W. C. W. Methods for the intracellular supply of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duncan, R. & Richardson, S. C. W. Endocytosis and intracellular trafficking as gateways for nanomedicine supply: alternatives and challenges. Mol. Pharm. 9, 2380–2402 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iversen, T.-G., Skotland, T. & Sandvig, Okay. Endocytosis and intracellular transport of nanoparticles: current data and wish for future research. Nano Right now 6, 176–185 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key ideas and strategies for finding out the endocytosis of organic and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Francia, V. et al. Corona composition can have an effect on the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iversen, T. G., Frerker, N. & Sandvig, Okay. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J. Nanobiotechnol. 10, 33 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, S., Bartholdson, S. J., Sofa, A. C. M., Yusa, Okay. & Wright, G. J. Genome-scale identification of mobile pathways required for cell floor recognition. Genome Res. 28, 1372–1382 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collinet, C. et al. Techniques survey of endocytosis by multiparametric picture evaluation. Nature 464, 243–249 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carette, J. E. et al. Haploid genetic screens in human cells establish host components utilized by pathogens. Science 326, 1231–1235 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Navarro Negredo, P. et al. Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. J. Cell Biol. 216, 2927–2943 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jae, L. T. et al. Deciphering the glycosylome of dystroglycanopathies utilizing haploid screens for lassa virus entry. Science 340, 479–483 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan, L. M. et al. Fluorescence-based phenotypic choice permits ahead genetic screens in haploid human cells. PLoS ONE 7, e39651 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, E. M. et al. Comparative haploid genetic screens reveal divergent pathways within the biogenesis and trafficking of glycophosphatidylinositol-anchored proteins. Cell Rep. 11, 1727–1736 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luteijn, R. D. et al. A genome-wide haploid genetic display identifies heparan sulfate-associated genes and the macropinocytosis modulator TMED10 as components supporting vaccinia virus an infection. J. Virol. 93, e02160-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carette, J. E. et al. Ebola virus entry requires the ldl cholesterol transporter Niemann–Decide C1. Nature 477, 340–343 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngo, W. et al. Figuring out cell receptors for the nanoparticle protein corona utilizing genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riblett, A. M. et al. A haploid genetic display identifies heparan sulfate proteoglycans supporting Rift Valley fever virus an infection. J. Virol. 90, 1414–1423 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillay, S. et al. A vital receptor for adeno-associated virus an infection. Nature 530, 108–112 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinc, A. et al. The Onpattro story and the scientific translation of nanomedicines containing nucleic acid-based medicine. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Okay. et al. Multiomics evaluation of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is critical for his or her perform. Nat. Commun. 14, 4007 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, P., Wills, J. W., Brown, M. R., Barnes, C. M. & Summers, H. D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun. 10, 2341 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panet, E. et al. The interface of nanoparticles with proliferating mammalian cells. Nat. Nanotechnol. 12, 598–600 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Åberg, C., Piattelli, V., Montizaan, D. & Salvati, A. Sources of variability in nanoparticle uptake by cells. Nanoscale 13, 17530–17546 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christianson, H. C., Svensson, Okay. J., van Kuppevelt, T. H., Li, J. P. & Belting, M. Most cancers cell exosomes depend upon cell-surface heparan sulfate proteoglycans for his or her internalization and practical exercise. Proc. Natl Acad. Sci. USA 110, 17380–17385 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, B. S. & Zuhorn, I. S. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood–mind barrier mannequin. Eur. J. Neurosci. 53, 706–719 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panarella, A. et al. A scientific high-content screening microscopy strategy reveals key roles for Rab33b, OATL1 and Myo6 in nanoparticle trafficking in HeLa cells. Sci. Rep. 6, 28865 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann, D. et al. Mass spectrometry and imaging evaluation of nanoparticle-containing vesicles present a mechanistic perception into mobile trafficking. ACS Nano 8, 10077–10088 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shapero, Okay. et al. Time and area resolved uptake examine of silica nanoparticles by human cells. Mol. BioSyst. 7, 371–378 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turnbull, J., Powell, A. & Guimond, S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Traits Cell Biol. 11, 75–82 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, P. et al. Macrophage polarization alters the expression and sulfation sample of glycosaminoglycans. Glycobiology 25, 502–513 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, M. & Klibanov, A. M. Non-viral gene remedy: polycation-mediated DNA supply. Appl. Microbiol. Biotechnol. 62, 27–34 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Favretto, M. E., Wallbrecher, R., Schmidt, S., van de Putte, R. & Brock, R. Glycosaminoglycans within the mobile uptake of drug supply vectors—bystanders or lively gamers? J. Management. Launch 180, 81–90 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olivieri, P. H., Jesus, M. B., Nader, H. B., Justo, G. Z. & Sousa, A. A. Cell-surface glycosaminoglycans regulate the mobile uptake of charged polystyrene nanoparticles. Nanoscale 14, 7350–7363 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Christianson, H. C. & Belting, M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 35, 51–55 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Heparan sulfate assists SARS-CoV-2 in cell entry and may be focused by permitted medicine in vitro. Cell Discov. 6, 80 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanford, Okay. I. et al. Syndecan-1 is the first heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J. Clin. Make investments. 119, 3236–3245 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, Okay. J. & Fuki, I. V. Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism. Curr. Opin. Lipidol. 8, 253–262 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, W. J., Asthana, S., Kraemer, F. B. & Azhar, S. Scavenger receptor B sort 1: expression, molecular regulation, and ldl cholesterol transport perform. J. Lipid Res. 59, 1114–1131 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolset, S. O. & Salmivirta, M. Cell floor heparan sulfate proteoglycans and lipoprotein metabolism. Cell. Mol. Life Sci. 56, 857–870 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lesniak, A. et al. Nanoparticle adhesion to the cell membrane and its impact on nanoparticle uptake effectivity. J. Am. Chem. Soc. 135, 1438–1444 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Okay., Mesquita, B., Horvatovich, P. & Salvati, A. Tuning liposome composition to modulate corona formation in human serum and mobile uptake. Acta Biomater. 106, 314–327 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA supply by selective organ focusing on nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ focusing on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritz, S. et al. Protein corona of nanoparticles: distinct proteins regulate the mobile uptake. Biomacromolecules 16, 1311–1321 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, A. L., Hulett, M. D. & Parish, C. R. Histidine-rich glycoprotein binds to cell-surface heparan sulfate by way of its N-terminal area following Zn2+ chelation. J. Biol. Chem. 279, 30114–30122 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles