Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Rising fungal threats to animal, plant and ecosystem well being. Nature. 2012;484:186–94.
Steinberg G, Gurr SJ. Fungi, fungicide discovery and world meals safety. Fungal Genet Biol. 2020;144:103476.
Manici LM, Bregaglio S, Fumagalli D, Donatelli M. Modelling soil borne fungal pathogens of arable crops below local weather change. Int J Biometeorol. 2014;58(10):2071–83.
Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia Sclerotiorum (Lib.) De Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol. 2006;7:1–16.
Kabbage M, Yarden O, Dickman MB. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic way of life. Plant Sci. 2015;233:53–60.
Xia ST, Xu Y, Hoy RH, Zhang JX, Qin L, Li X. The infamous soilborne pathogenic fungus Sclerotinia sclerotiorum: an replace on genes studied with mutant evaluation. Pathogens. 2019;9:27.
Li DD, Tang Y, Lin J, Cai WW. Strategies for genetic transformation of filamentous fungi. Microb Cell Reality. 2017;16:168.
Liu ZH, Friesen TL. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Strategies Mol Biol. 2012;835:365–75.
Weld RJ, Eady CC, Ridgway HJ. Agrobacterium-mediated transformation of Sclerotinia Sclerotiorum. J Microbiol Strategies. 2006;65:202–7.
Sanford JC, Smith FD, Russell JA. Optimizing the biolistic course of for various organic purposes. Strategies Enzymol. 1993;217:483–509.
Te’o VSJ, Nevalainen KMH. Use of the biolistic particle supply system to rework fungal genomes. Springer Worldwide Publishing; 2015. https://doi.org/10.1007/978-3-319-10142-2_12.
Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and extremely environment friendly technique for genetic transformation of fungi using shock waves. Fungal Genet Biol. 2013;56:9–16.
Rivera AL, Magaña-Ortíz D, Gómez-Lim M, Fernández F, Loske AM. Bodily strategies for genetic transformation of fungi and yeast. Phys Life Rev. 2014;11:184–203.
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.
Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin SY, Trewyn BG, Lyznik LA, Wang Okay. Mesoporous silica nanoparticle-mediated intracellular cre protein supply for maize genome modifying by way of loxP website excision. Plant Physiol. 2014;164:537–47.
Zhao X, Meng ZG, Wang Y, Chen WJ, Solar CJ, Cui B, Cui JH, Yu ML, Zeng ZH, Guo SD, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Vegetation. 2017;3:956–64.
Wang ZP, Zhang ZB, Zheng DY, Zhang TT, Li XL, Zhang C, Yu R, Wei JH, Wu ZY. Environment friendly and genotype impartial maize transformation utilizing pollen transfected by DNA-coated magnetic nanoparticles. J Integr Plant Biol. 2022;64:1145–56.
Ben-Haim AE, Feldbaum RA, Belausov E, Zelinger E, Maria R, Nativ-Roth E, Mani KA, Barda O, Sionov E, Mechrez G. DNA supply to intact plant cells by casein nanoparticles with confirmed gene expression. Adv Funct Mater. 2024;34:2314756.
Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers ship siRNA to intact plant cells for environment friendly gene knockdown. Sci Adv. 2020;6:eaaz0495.
Cai Y, Liu ZJ, Wang H, Meng H, Cao YH. Mesoporous silica nanoparticles mediate SiRNA supply for long-term multi-gene silencing in itact plnats. Adv Sci. 2024;1(19):2301358.
Yu P, Zheng XG, Alimi LO, AI-Babili S, Khashab NM. Steel-organic framework-mediated supply of nucleic acid throughout intact plant cells. ACS Appl Mater Interfaces. 2024;17(15):18245–51.
Jat SK, Bhattacharya J, Sharma MK. Nanomaterial based mostly gene supply: a promising technique for plant genome engineering. J Mater Chem B. 2020;8:4165–75.
Vijayakumar PS, Abhilash OU, Khan BM, Prasad BLV. Nanogold-loaded sharp‐edged carbon bullets as plant‐gene carriers. Adv Funct Mater. 2010;20:2416–23.
Naqvi S, Maitra AN, Abdin MZ, Akmal Md, Arora I, Samim Md. Calcium phosphate nanoparticle mediated genetic transformation in crops. J Mater Chem. 2012;22:3500.
Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQM, Xu ZP. Clay nanosheets for topical supply of RNAi for sustained safety in opposition to plant viruses. Nat Vegetation. 2017;3:16207.
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, et al. Nanoparticle mobile internalization is just not required for RNA supply to mature plant leaves. Nat Nanotechnol. 2022;17:197–205.
Wang JW, Cunningham FJ, Goh NS, Boozarpour NN, Pham M, Landry MP. Nanoparticles for protein supply in planta. Curr Opin Plant Biol. 2021;60:102052.
Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, et al. A nanobionic light-emitting plant. Nano Lett. 2017;17:7951–61.
Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Cunningham FJ, Fan C, Landry MP. DNA nanostructures coordinate gene silencing in mature crops. Proc Natl Acad Sci U S A. 2019;116(15):7543–8.
Li S, Li J, Du M, Deng G, Tune Z, Han H. Environment friendly gene silencing in intact plant cells utilizing siRNA delivered by useful graphene oxide nanoparticles. Angew Chem Int Ed Engl. 2022;61(40):e202210014.
Filyak Y, Finiuk N, Mitina N, Bilyk O, Titorenko V, Hrydzhuk O, Zaichenko A, Stoika R. A novel technique for genetic transformation of yeast cells utilizing oligoelectrolyte polymeric nanoscale carriers. Biotechniques. 2013;54(1):35–43.
Deshmukh Okay, Ramanan SR, Kowshik M. A novel technique for genetic transformation of C. albicans utilizing modified-hydroxyapatite nanoparticles as a plasmid DNA car. Nanoscale Adv. 2019;1(8):3015–22.
Zhang XL, Hou SX, Liang MY, Xu JM, Ye MJ, Wang YX, Wen FQ, Xu ZG, Liu SX. Engineering Nanofusiform Iron-doped polydiaminopyridine increase intratumoral penetration for immunogenic cell death-mediated synergistic Photothermal/Chemo remedy. Chem Eng J. 2023;462:142159.
Liang XF, Liberti D, Li MY, Kim YT, Hutchens A, Wilson R, Rollins JA. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia Sclerotiorum don’t accumulate oxalic acid, however do produce restricted lesions on host crops. Mol Plant Pathol. 2015;16(6):559–71.
Godoy G, Steadman JR, Dickman MB, Dam R. Use of mutants to show the function of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol MolPlant P. 1990;37:179–91.
Leroch M, Mernke D, Koppenhoefer D, Schneider P, Mosbach A, Doehlemann G, Hahn M. Dwelling colours within the grey mould pathogen Botrytis Cinerea: codon-optimized genes encoding inexperienced fluorescent protein and mCherry, which exhibit vibrant fluorescence. Appl Environ Microbiol. 2011;77:2887–97.
Ding YJ, Mei JQ, Chai YR, Yang WJ, Mao Y, Yan BQ, Yu Y, Disi JO, Rana Okay, Li JN, et al. Sclerotinia Sclerotiorum makes use of host-derived copper for ROS cleansing and an infection. PLoS Pathog. 2020;16:e1008919.
Braim FS, Razak NNANA, Aziz AA, Dheyab MA, Ismael LQ. Optimization of ultrasonic-assisted strategy for synthesizing a extremely steady biocompatible bismuth-coated iron oxide nanoparticles utilizing a face-centered central composite design. Ultrason Sonochem. 2023;95:106371–86.
Rollins JA. The Sclerotinia Sclerotiorum pac1 gene is required for sclerotial improvement and virulence. Mol Plant Microbe Work together. 2003;16:785–95.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory handbook. 2nd ed. Chilly Spring Harbor: Chilly Spring Harbor Laboratory Press; 1989.
Esher SK, Granek JA, Alspaugh JA. Fast mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet Biol. 2015;82:9–21.
Livak KJ, Schmittgen TD. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two(-Delta Delta C(T)) technique. Strategies. 2001;25:402–8.
Liu X, Zhang Okay, Liu Y, Xie Z, Zhang C. Oxalic acid from Sesbania Rostrata seed exudates mediates the chemotactic response of Azorhizobium caulinodans ORS571 utilizing a number of methods. Entrance Microbiol. 2019;10:2727.
Jiang DE, Zhu W, Wang YC, Solar C, Zhang KQ, Yang JK. Molecular instruments for useful genoics in filamentous fungi: current advances and new methods. Biotechnol Adv. 2013;31(8):1562–74.
Ozeki Okay, Kyoya F, Hizume Okay, Kanda A, Hamachi M, Nunokawa Y. Transformation of intact aspergillus Niger by electroporation. Biosci Biotechnol Biochem. 1994;58:2224–7.
Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2:338–42.
Amar-Lewis E, Azagury A, Chintakunta R, Goldbart R, Traitel T, Prestwood J, Landesman-Milo D, Peer D, Kost J. Quaternized starch-based service for siRNA supply: from mobile uptake to gene silencing. J Management Launch. 2014;185:109–20.
Solar XD, Yuan XZ, Jia YB, Feng LJ, Zhu FP, Dong SS, Liu JJ, Kong XP, Tian HY, Duan JL, et al. Differentially charged nanoplastics show distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol. 2020;15:755–60.
Gao MY, Chang J, Wang ZT, Zhang HT, Wang T. Advances in transport and toxicity of nanoparticles in crops. J Nanobiotechnol. 2023;21:75.
Hola Okay, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots—rising mild emitters for bioimaging, most cancers remedy and optoelectronics. Nano As we speak. 2014;9:590–603.
van den Berg MA, Maruthachalam KM. Genetic transformation techniques in fungi. Genetic Transformation Methods in Fungi. Switzerland: Springer Worldwide Publishing; 2015. pp. 3–4.