[HTML payload içeriği buraya]
28.2 C
Jakarta
Sunday, November 24, 2024

Full on-device manipulation of olefin metathesis for exact manufacturing


  • Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Trnka, T. M. & Grubbs, R. H. The event of L2X2RuCHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fürstner, A. Olefin metathesis and past. Angew. Chem. Int. Ed. 39, 3012–3043 (2000).

    Article 

    Google Scholar
     

  • Grubbs, R. H. & Chang, S. Current advances in olefin metathesis and its software in natural synthesis. Tetrahedron 54, 4413–4450 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Nicolaou, Okay. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in whole synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Current advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Becker, M. R., Watson, R. B. & Schindler, C. S. Past olefins: new metathesis instructions for synthesis. Chem. Soc. Rev. 47, 7867–7881 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hilf, S. & Kilbinger, A. F. M. Practical finish teams for polymers ready utilizing ring-opening metathesis polymerization. Nat. Chem. 1, 537–546 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mutlu, H., de Espinosa, L. M. & Meier, M. A. R. Acyclic diene metathesis: a flexible instrument for the development of outlined polymer architectures. Chem. Soc. Rev. 40, 1404–1445 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sinclair, F., Alkattan, M., Prunet, J. & Shaver, M. P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem. 8, 3385–3398 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A regular system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. B., Ott, Okay. C. & Grubbs, R. H. Kinetics and stereochemistry of the titanacyclobutane–titanaethylene interconversion. Investigation of a degenerate olefin metathesis response. J. Am. Chem. Soc. 104, 7491–7496 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, Okay., Tanaka, Okay., Takeo, H. & Matsumura, C. Intermediates for the degenerate and productive metathesis of propene elucidated by the metathesis response of (Z)-propene-1d1. J. Am. Chem. Soc. 109, 2422–2425 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Stewart, I. C., Keitz, B. Okay., Kuhn, Okay. M., Thomas, R. M. & Grubbs, R. H. Nonproductive occasions in ring-closing metathesis utilizing ruthenium catalysts. J. Am. Chem. Soc. 132, 8534–8535 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Easter, Q. T. & Blum, S. A. Single turnover at molecular polymerization catalysts reveals spatiotemporally resolved reactions. Angew. Chem. Int. Ed. 56, 13772–13775 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Easter, Q. T. & Blum, S. A. Proof for dynamic chemical kinetics at particular person molecular ruthenium catalysts. Angew. Chem. Int. Ed. 57, 1572–1575 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Easter, Q. T., Garcia, A. I. V. & Blum, S. A. Single-polymer–particle progress kinetics with molecular catalyst speciation and single-turnover imaging. ACS Catal. 9, 3375–3383 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Single polymer progress dynamics. Science 358, 352–355 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ibrahem, I., Yu, M., Schrock, R. R. & Hoveyda, A. H. Extremely Z– and enantioselective ring-opening/cross-metathesis reactions catalyzed by stereogenic-at-Mo adamantylimido complexes. J. Am. Chem. Soc. 131, 3844–3845 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flook, M. M., Jiang, A. J., Schrock, R. R., Müller, P. & Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complicated. J. Am. Chem. Soc. 131, 7962–7963 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, A. J., Zhao, Y., Schrock, R. R. & Hoveyda, A. H. Extremely Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 131, 16630–16631 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides by catalytic cross-metathesis. Nature 531, 459–465 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koh, M. J. et al. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions. Nature 542, 80–85 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Torker, S., Müller, A. & Chen, P. Constructing stereoselectivity right into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization. Angew. Chem. Int. Ed. 49, 3762–3766 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Endo, Okay. & Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 133, 8525–8527 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keitz, B. Okay., Endo, Okay., Herbert, M. B. & Grubbs, R. H. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J. Am. Chem. Soc. 133, 9686–9688 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khan, R. Okay. M., Torker, S. & Hoveyda, A. H. Readily accessible and simply modifiable Ru-based catalysts for environment friendly and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc. 135, 10258–10261 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan, R. Okay. M., Torker, S. & Hoveyda, A. H. Reactivity and selectivity variations between catecholate and catechothiolate Ru complexes. Implications concerning design of stereoselective olefin metathesis catalysts. J. Am. Chem. Soc. 136, 14337–14340 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Unveiling the total response path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, A. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 6, 266–275 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Actual-time monitoring of response stereochemistry by single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Electrical field-catalyzed single-molecule Diels–Alder response dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guan, J. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y., Yang, C., Zhang, L. & Guo, X. Tunable interferometric results between single-molecule Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 145, 6577–6584 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, Y., Yang, C., Zhou, S., Liu, Z. & Guo, X. A single-molecule memristor based mostly on an electric-field-driven dynamical construction reconfiguration. Adv. Mater. 34, 2204827 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Reactions in single-molecule junctions. Nat. Rev. Mater. 8, 165–185 (2023).

    Article 

    Google Scholar
     

  • Dief, E. M., Low, P. J., Díez-Pérez, I. & Darwish, N. Advances in single-molecule junctions as instruments for chemical and biochemical evaluation. Nat. Chem. 15, 600–614 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect digital reactions on the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson, P. W. Extra is completely different. Science 177, 393–396 (1972).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Strogatz, S. et al. Fifty years of ‘Extra is completely different’. Nat. Rev. Phys. 4, 508–510 (2022).

    Article 

    Google Scholar
     

  • Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Construction and reactivity/selectivity management by oriented-external electrical fields. Chem. Soc. Rev. 47, 5125–5145 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shaik, S., Danovich, D., Pleasure, J., Wang, Z. & Stuyver, T. Electrical-field mediated chemistry: uncovering and exploiting the potential of (oriented) electrical fields to exert chemical catalysis and response management. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shaik, S., Mandal, D. & Ramanan, R. Oriented electrical fields as future sensible reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dief, E. M. & Darwish, N. SARS-CoV-2 spike proteins react with Au and Si, are electrically conductive and denature at 3 × 108 V m−1: a floor bonding and a single-protein circuit examine. Chem. Sci. 14, 3428–3440 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder response. Nature 531, 88–91 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 09 (Gaussian, 2013).

  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and round dichroism spectra utilizing density practical power fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density practical principle. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barone, V. & Cossi, M. Quantum calculation of molecular energies and power gradients in resolution by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles