Chen, W. et al. Scalable and programmable phononic community with trapped ions. Nat. Phys. 19, 877–883 (2023).
Zhong, H.-S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).
Kannan, B. et al. On-demand directional microwave photon emission utilizing waveguide quantum electrodynamics. Nat. Phys. 19, 394–400 (2023).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Materials platforms for spin-based photonic quantum applied sciences. Nat. Rev. Mater. 3, 38–51 (2018).
Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Secure solid-state supply of single photons. Phys. Rev. Lett. 85, 290–293 (2000).
Hausmann, B. J. M. Nanophotonics in Diamond (Harvard Univ., 2013).
Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Statement of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).
Darquié, B. et al. Managed single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005).
Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012).
Gupta, S., Wu, W., Huang, S. & Yakobson, B. I. Single-photon emission from two-dimensional supplies, to a brighter future. J. Phys. Chem. Lett. 14, 3274–3284 (2023).
Tran, T. T., Bray, Ok., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
Gaither-Ganim, M. B., Newlon, S. A., Anderson, M. G. & Lee, B. Natural molecule single-photon sources. Oxf. Open Mater. Sci. 3, itac017 (2023).
Kask, P., Piksarv, P. & Mets, Ü. Fluorescence correlation spectroscopy within the nanosecond time vary: photon antibunching in dye fluorescence. Eur. Biophys. J. 12, 163–166 (1985).
Arakawa, Y. & Holmes, M. J. Progress in quantum-dot single photon sources for quantum data applied sciences: a broad spectrum overview. Appl. Phys. Rev. 7, 021309 (2020).
Pelton, M. et al. Environment friendly supply of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).
Aharonovich, I., Englund, D. & Toth, M. Strong-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Große, J., von Helversen, M., Koulas-Simos, A., Hermann, M. & Reitzenstein, S. Improvement of site-controlled quantum dot arrays appearing as scalable sources of indistinguishable photons. APL Photon. 5, 096107 (2020).
Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based mostly photonic circuits. Nano Lett. 16, 2289–2294 (2016).
Schnauber, P. et al. Indistinguishable photons from deterministically built-in single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett. 19, 7164–7172 (2019).
Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration strategies for on-chip quantum photonics. Optica 7, 291–308 (2020).
Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Preprint at https://arxiv.org/abs/2306.06460 (2023).
Elshaari, A. W., Pernice, W., Srinivasan, Ok., Benson, O. & Zwiller, V. Hybrid built-in quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for digital and optoelectronic purposes. Chem. Rev. 110, 389–458 (2010).
Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The floor science of nanocrystals. Nat. Mater. 15, 141–153 (2016).
Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum data science. Chem. Rev. 121, 3186–3233 (2020).
Saboktakin, M. et al. Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano 7, 7186–7192 (2013).
Uppu, R. et al. Scalable built-in single-photon supply. Sci. Adv. 6, eabc8268 (2020).
Kang, C. & Honciuc, A. Self-assembly of Janus nanoparticles into transformable suprastructures. J. Phys. Chem. Lett. 9, 1415–1421 (2018).
Hao, Q., Lv, H., Ma, H., Tang, X. & Chen, M. Improvement of self-assembly strategies on quantum dots. Supplies 16, 1317 (2023).
Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent system. Adv. Mater. 35, 2206613 (2023).
Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).
Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).
Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger charges in semiconductor quantum dots. Science 287, 1011–1014 (2000).
Chandrasekaran, V. et al. Almost blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).
Michler, P. et al. Quantum correlation amongst photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).
Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).
Zhu, C. et al. Room-temperature, extremely pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).
Becker, M. A. et al. Vivid triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).
Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).
Kaplan, A. E. Ok. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).
Proppe, A. H. et al. Extremely secure and pure single-photon emission with 250 ps optical coherence occasions in InP colloidal quantum dots. Nat. Nanotechnol. 18, 993–999 (2023).
Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).
Hanson, R. et al. Zeeman power and spin rest in a one-electron quantum dot. Phys. Rev. Lett. 91, 196802 (2003).
Furdyna, J. Ok. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).
Elzerman, J. M. et al. Single-shot read-out of a person electron spin in a quantum dot. Nature 430, 431–435 (2004).
Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).
Zhang, X. et al. Semiconductor quantum computation. Natl Sci. Rev. 6, 32–54 (2019).
Piot, N. et al. A single gap spin with enhanced coherence in pure silicon. Nat. Nanotechnol. 17, 1072–1077 (2022).
Beaulac, R., Archer, P. I., Ochsenbein, S. T. & Gamelin, D. R. Mn2+-doped CdSe quantum dots: new inorganic supplies for spin-electronics and spin-photonics. Adv. Funct. Mater. 18, 3873–3891 (2008).
Archer, P. I., Santangelo, S. A. & Gamelin, D. R. Direct statement of sp−d trade interactions in colloidal Mn2+– and Co2+-doped CdSe quantum dots. Nano Lett. 7, 1037–1043 (2007).
Barrows, C. J., Fainblat, R. & Gamelin, D. R. Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities. J. Mater. Chem. 5, 5232–5238 (2017).
Neumann, T. et al. Manganese doping for enhanced magnetic brightening and round polarization management of darkish excitons in paramagnetic layered hybrid metal-halide perovskites. Nat. Commun. 12, 3489 (2021).
Lohmann, S.-H., Cai, T., Morrow, D. J., Chen, O. & Ma, X. Brightening of darkish states in CsPbBr3 quantum dots brought on by light-induced magnetism. Small 17, 2101527 (2021).
Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).
Tran, N. M., Palluel, M., Daro, N., Chastanet, G. & Freysz, E. Time-resolved research of the photoswitching of gold nanorods coated with a spin-crossover compound shell. J. Phys. Chem. C 125, 22611–22621 (2021).
Zhang, L. et al. Reversible switching of robust gentle–matter coupling utilizing spin-crossover molecular supplies. J. Phys. Chem. Lett. 14, 6840–6849 (2023).
Fernandez-Gonzalvo, X., Chen, Y.-H., Yin, C., Rogge, S. & Longdell, J. J. Coherent frequency up-conversion of microwaves to the optical telecommunications band in an Er:YSO crystal. Phys. Rev. A 92, 062313 (2015).
Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).
Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Environment friendly quantum reminiscence for gentle. Nature 465, 1052–1056 (2010).
Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with secure transition frequency. Sci. Adv. 8, abo4538 (2022).
Kindem, J. M. et al. Management and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).
Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).
Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic supply of single photons within the telecom band. Phys. Rev. Lett. 120, 243601 (2018).
Lin, X., Han, Y., Zhu, J. & Wu, Ok. Room-temperature coherent optical manipulation of gap spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 18, 124–130 (2023).
Viitaniemi, M. L. Ok. et al. Coherent spin preparation of indium donor qubits in single ZnO nanowires. Nano Lett. 22, 2134–2139 (2022).
Saeedi, Ok. et al. Room-temperature quantum bit storage exceeding 39 minutes utilizing ionized donors in silicon-28. Science 342, 830–832 (2013).
Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).
Grinolds, M. S. et al. Subnanometre decision in three-dimensional magnetic resonance imaging of particular person darkish spins. Nat. Nanotechnol. 9, 279–284 (2014).
Ishii, A. & Miyasaka, T. Upconverting near-infrared gentle detection in lead halide perovskite with core–shell lanthanide nanoparticles. Adv. Photon. Res. 4, 2200222 (2023).
Gong, J., Steinsultz, N. & Ouyang, M. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metallic nanoparticles and semiconductor quantum dots. Nat. Commun. 7, 11820 (2016).
Vamivakas, A. N. et al. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011).
Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).
Aslam, N. et al. Quantum sensors for biomedical purposes. Nat. Rev. Phys. 5, 157–169 (2023).
Mok, W.-Ok., Bharti, Ok., Kwek, L.-C. & Bayat, A. Optimum probes for world quantum thermometry. Commun. Phys. 4, 62 (2021).
Kucsko, G. et al. Nanometre-scale thermometry in a dwelling cell. Nature 500, 54–58 (2013).
Toyli, D. M., de las Casas, C. F., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).
Segawa, T. F. & Igarashi, R. Nanoscale quantum sensing with nitrogen-vacancy facilities in nanodiamonds—a magnetic resonance perspective. Prog. Nucl. Magn. Reson. Spectrosc. 134–135, 20–38 (2023).
Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).
Taylor, J. M. et al. Excessive-sensitivity diamond magnetometer with nanoscale decision. Nat. Phys. 4, 810–816 (2008).
Vafaeezadeh, M. & Thiel, W. R. Activity-specific Janus supplies in heterogeneous catalysis. Angew. Chem. Int. Ed. 61, e202206403 (2022).
Zehavi, M., Sofer, D., Miloh, T., Velev, O. D. & Yossifon, G. Optically modulated propulsion of electric-field-powered photoconducting Janus particles. Phys. Rev. Appl. 18, 024060 (2022).
Dong, R., Zhang, Q., Gao, W., Pei, A. & Ren, B. Extremely environment friendly light-driven TiO2–Au Janus micromotors. ACS Nano 10, 839–844 (2016).
Jang, B. et al. Multiwavelength light-responsive Au/B–TiO2 Janus micromotors. ACS Nano 11, 6146–6154 (2017).
Xuan, M. et al. Close to infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016).
Kink, F., Collado, M. P., Wiedbrauk, S., Mayer, P. & Dube, H. Bistable photoswitching of hemithioindigo with inexperienced and pink gentle: entry level to superior molecular digital data processing. Chem. Eur. J. 23, 6237–6243 (2017).
Erbas-Cakmak, S. et al. Molecular logic gates: the previous, current and future. Chem. Soc. Rev. 47, 2228–2248 (2018).
Ding, H. & Ma, Y. Interactions between Janus particles and membranes. Nanoscale 4, 1116–1122 (2012).
Huhnstock, R. et al. Translatory and rotatory movement of exchange-bias capped Janus particles managed by dynamic magnetic discipline landscapes. Sci. Rep. 11, 21794 (2021).
Claussen, J. C., Franklin, A. D., Ul Haque, A., Porterfield, D. M. & Fisher, T. S. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3, 37–44 (2009).
Xia, Y. et al. Entanglement-enhanced optomechanical sensing. Nat. Photon. 17, 470–477 (2023).
Zhou, H. et al. Quantum metrology with strongly interacting spin methods. Phys. Rev. X 10, 031003 (2020).
Greenberger, D. M., Horne, M. A. & Zeilinger, A. Going past Bell’s theorem. Preprint at https://arxiv.org/abs/0712.0921 (2007).
Browaeys, A. & Lahaye, T. Many-body physics with individually managed Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Cai, R. et al. Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals. Nat. Commun. 14, 2472 (2023).
Udvarhelyi, P. et al. Spectrally secure defect qubits with no inversion symmetry for sturdy spin-to-photon interface. Phys. Rev. Appl. 11, 044022 (2019).
Pelucchi, E. et al. The potential and world outlook of built-in photonics for quantum applied sciences. Nat. Rev. Phys. 4, 194–208 (2021).
Xu, Q. et al. Heterogeneous integration of colloidal quantum dot inks on silicon allows extremely environment friendly and secure infrared photodetectors. ACS Photon. 9, 2792–2801 (2022).
Yun, H. J. et al. Answer-processable built-in CMOS circuits based mostly on colloidal CuInSe2 quantum dots. Nat. Commun. 11, 5280 (2020).
Dong, M. et al. Excessive-speed programmable photonic circuits in a cryogenically appropriate, seen–near-infrared 200 mm CMOS structure. Nat. Photon. 16, 59–65 (2022).
Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).
Kuwahata, A. et al. Magnetometer with nitrogen-vacancy middle in a bulk diamond for detecting magnetic nanoparticles in biomedical purposes. Sci. Rep. 10, 2483 (2020).
Bromberg, Y., Lahini, Y., Small, E. & Silberberg, Y. Hanbury Brown and Twiss interferometry with interacting photons. Nat. Photon. 4, 721–726 (2010).
Lin, X. et al. Electrically-driven single-photon sources based mostly on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).
Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).
Buckley, S., Rivoire, Ok. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).
Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell impact: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).
Varoutsis, S. et al. Restoration of photon indistinguishability within the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).
Bockelmann, U., Heller, W. & Abstreiter, G. Microphotoluminescence research of single quantum dots. II. Magnetic-field experiments. Phys. Rev. B 55, 4469–4472 (1997).
Saxena, A. et al. Bettering indistinguishability of single photons from colloidal quantum dots utilizing nanocavities. ACS Photon. 6, 3166–3173 (2019).
Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, 1998); https://doi.org/10.1017/CBO9780511524141
Klimov, V. I. Nanocrystal Quantum Dots (CRC Press, 2017); https://doi.org/10.1201/9781420079272
Shamsi, J., City, A. S., Imran, M., Trizio, L. D. & Manna, L. Steel halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).
Harris, D. Ok. & Bawendi, M. G. Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012).
Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).
Abudayyeh, H. et al. Single photon sources with close to unity assortment efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photon. 6, 036109 (2021).
Ratchford, D., Shafiei, F., Kim, S., Grey, S. Ok. & Li, X. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 11, 1049–1054 (2011).
Chen, O. et al. Compact high-quality CdSe–CdS core-shell nanocrystals with slender emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).
Efros, A. L. & Nesbitt, D. J. Origin and management of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).
Fan, F. et al. Steady-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
Xia, P. et al. Sequential co-passivation in inas colloidal quantum dot solids allows environment friendly near-infrared photodetectors. Adv. Mater. 35, 2301842 (2023).
Xiao, P. et al. Floor passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nat. Commun. 14, 49 (2023).
Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved sturdiness and stability. ACS Power Lett. 3, 641–646 (2018).
Mir, W. J. et al. Lecithin capping ligands allow ultrastable perovskite-phase CsPbI3 quantum dots for Rec. 2020 bright-red light-emitting diodes. J. Am. Chem. Soc. 144, 13302–13310 (2022).
Liu, Y. et al. Vivid and secure light-emitting diodes based mostly on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021).
Mi, C. et al. Biexciton-like Auger blinking in strongly confined CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 14, 5466–5474 (2023).
Zhao, T. et al. Emulsion-oriented meeting for Janus double-spherical mesoporous nanoparticles as organic logic gates. Nat. Chem. 15, 832–840 (2023).
Yi, Y., Sanchez, L., Gao, Y. & Yu, Y. Janus particles for organic imaging and sensing. Analyst 141, 3526–3539 (2016).
Safaie, N. & Ferrier, R. C. Jr. Janus nanoparticle synthesis: overview, current developments, and purposes. J. Appl. Phys. 127, 170902 (2020).
Xie, W. et al. Colloidal quantum dots enabling coherent gentle sources for built-in silicon-nitride photonics. IEEE J. Sel. Prime. Quantum Electron. 23, 1–13 (2017).