[HTML payload içeriği buraya]
27.4 C
Jakarta
Monday, November 25, 2024

Engineering colloidal semiconductor nanocrystals for quantum data processing


  • Chen, W. et al. Scalable and programmable phononic community with trapped ions. Nat. Phys. 19, 877–883 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational benefit utilizing photons. Science 370, 1460–1463 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kannan, B. et al. On-demand directional microwave photon emission utilizing waveguide quantum electrodynamics. Nat. Phys. 19, 394–400 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Materials platforms for spin-based photonic quantum applied sciences. Nat. Rev. Mater. 3, 38–51 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Secure solid-state supply of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hausmann, B. J. M. Nanophotonics in Diamond (Harvard Univ., 2013).

  • Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Statement of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Darquié, B. et al. Managed single-photon emission from a single trapped two-level atom. Science 309, 454–456 (2005).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Gupta, S., Wu, W., Huang, S. & Yakobson, B. I. Single-photon emission from two-dimensional supplies, to a brighter future. J. Phys. Chem. Lett. 14, 3274–3284 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, T. T., Bray, Ok., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gaither-Ganim, M. B., Newlon, S. A., Anderson, M. G. & Lee, B. Natural molecule single-photon sources. Oxf. Open Mater. Sci. 3, itac017 (2023).

    Article 

    Google Scholar
     

  • Kask, P., Piksarv, P. & Mets, Ü. Fluorescence correlation spectroscopy within the nanosecond time vary: photon antibunching in dye fluorescence. Eur. Biophys. J. 12, 163–166 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Arakawa, Y. & Holmes, M. J. Progress in quantum-dot single photon sources for quantum data applied sciences: a broad spectrum overview. Appl. Phys. Rev. 7, 021309 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Pelton, M. et al. Environment friendly supply of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Aharonovich, I., Englund, D. & Toth, M. Strong-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Große, J., von Helversen, M., Koulas-Simos, A., Hermann, M. & Reitzenstein, S. Improvement of site-controlled quantum dot arrays appearing as scalable sources of indistinguishable photons. APL Photon. 5, 096107 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zadeh, I. E. et al. Deterministic integration of single photon sources in silicon based mostly photonic circuits. Nano Lett. 16, 2289–2294 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Schnauber, P. et al. Indistinguishable photons from deterministically built-in single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett. 19, 7164–7172 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration strategies for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Preprint at https://arxiv.org/abs/2306.06460 (2023).

  • Elshaari, A. W., Pernice, W., Srinivasan, Ok., Benson, O. & Zwiller, V. Hybrid built-in quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for digital and optoelectronic purposes. Chem. Rev. 110, 389–458 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The floor science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum data science. Chem. Rev. 121, 3186–3233 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Saboktakin, M. et al. Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano 7, 7186–7192 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uppu, R. et al. Scalable built-in single-photon supply. Sci. Adv. 6, eabc8268 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kang, C. & Honciuc, A. Self-assembly of Janus nanoparticles into transformable suprastructures. J. Phys. Chem. Lett. 9, 1415–1421 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Q., Lv, H., Ma, H., Tang, X. & Chen, M. Improvement of self-assembly strategies on quantum dots. Supplies 16, 1317 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent system. Adv. Mater. 35, 2206613 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger charges in semiconductor quantum dots. Science 287, 1011–1014 (2000).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chandrasekaran, V. et al. Almost blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104–6109 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Michler, P. et al. Quantum correlation amongst photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, C. et al. Room-temperature, extremely pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Becker, M. A. et al. Vivid triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kaplan, A. E. Ok. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Proppe, A. H. et al. Extremely secure and pure single-photon emission with 250 ps optical coherence occasions in InP colloidal quantum dots. Nat. Nanotechnol. 18, 993–999 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hanson, R. et al. Zeeman power and spin rest in a one-electron quantum dot. Phys. Rev. Lett. 91, 196802 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Furdyna, J. Ok. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Elzerman, J. M. et al. Single-shot read-out of a person electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. Semiconductor quantum computation. Natl Sci. Rev. 6, 32–54 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piot, N. et al. A single gap spin with enhanced coherence in pure silicon. Nat. Nanotechnol. 17, 1072–1077 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Beaulac, R., Archer, P. I., Ochsenbein, S. T. & Gamelin, D. R. Mn2+-doped CdSe quantum dots: new inorganic supplies for spin-electronics and spin-photonics. Adv. Funct. Mater. 18, 3873–3891 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Archer, P. I., Santangelo, S. A. & Gamelin, D. R. Direct statement of spd trade interactions in colloidal Mn2+– and Co2+-doped CdSe quantum dots. Nano Lett. 7, 1037–1043 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Barrows, C. J., Fainblat, R. & Gamelin, D. R. Excitonic Zeeman splittings in colloidal CdSe quantum dots doped with single magnetic impurities. J. Mater. Chem. 5, 5232–5238 (2017).

    CAS 

    Google Scholar
     

  • Neumann, T. et al. Manganese doping for enhanced magnetic brightening and round polarization management of darkish excitons in paramagnetic layered hybrid metal-halide perovskites. Nat. Commun. 12, 3489 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lohmann, S.-H., Cai, T., Morrow, D. J., Chen, O. & Ma, X. Brightening of darkish states in CsPbBr3 quantum dots brought on by light-induced magnetism. Small 17, 2101527 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tran, N. M., Palluel, M., Daro, N., Chastanet, G. & Freysz, E. Time-resolved research of the photoswitching of gold nanorods coated with a spin-crossover compound shell. J. Phys. Chem. C 125, 22611–22621 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Reversible switching of robust gentle–matter coupling utilizing spin-crossover molecular supplies. J. Phys. Chem. Lett. 14, 6840–6849 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Gonzalvo, X., Chen, Y.-H., Yin, C., Rogge, S. & Longdell, J. J. Coherent frequency up-conversion of microwaves to the optical telecommunications band in an Er:YSO crystal. Phys. Rev. A 92, 062313 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Environment friendly quantum reminiscence for gentle. Nature 465, 1052–1056 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ulanowski, A., Merkel, B. & Reiserer, A. Spectral multiplexing of telecom emitters with secure transition frequency. Sci. Adv. 8, abo4538 (2022).

    Article 

    Google Scholar
     

  • Kindem, J. M. et al. Management and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic supply of single photons within the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lin, X., Han, Y., Zhu, J. & Wu, Ok. Room-temperature coherent optical manipulation of gap spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 18, 124–130 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Viitaniemi, M. L. Ok. et al. Coherent spin preparation of indium donor qubits in single ZnO nanowires. Nano Lett. 22, 2134–2139 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Saeedi, Ok. et al. Room-temperature quantum bit storage exceeding 39 minutes utilizing ionized donors in silicon-28. Science 342, 830–832 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wolf, T. et al. Subpicotesla diamond magnetometry. Phys. Rev. X 5, 041001 (2015).


    Google Scholar
     

  • Grinolds, M. S. et al. Subnanometre decision in three-dimensional magnetic resonance imaging of particular person darkish spins. Nat. Nanotechnol. 9, 279–284 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ishii, A. & Miyasaka, T. Upconverting near-infrared gentle detection in lead halide perovskite with core–shell lanthanide nanoparticles. Adv. Photon. Res. 4, 2200222 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gong, J., Steinsultz, N. & Ouyang, M. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metallic nanoparticles and semiconductor quantum dots. Nat. Commun. 7, 11820 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Vamivakas, A. N. et al. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Aslam, N. et al. Quantum sensors for biomedical purposes. Nat. Rev. Phys. 5, 157–169 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mok, W.-Ok., Bharti, Ok., Kwek, L.-C. & Bayat, A. Optimum probes for world quantum thermometry. Commun. Phys. 4, 62 (2021).

    Article 

    Google Scholar
     

  • Kucsko, G. et al. Nanometre-scale thermometry in a dwelling cell. Nature 500, 54–58 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Toyli, D. M., de las Casas, C. F., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Segawa, T. F. & Igarashi, R. Nanoscale quantum sensing with nitrogen-vacancy facilities in nanodiamonds—a magnetic resonance perspective. Prog. Nucl. Magn. Reson. Spectrosc. 134–135, 20–38 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Taylor, J. M. et al. Excessive-sensitivity diamond magnetometer with nanoscale decision. Nat. Phys. 4, 810–816 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Vafaeezadeh, M. & Thiel, W. R. Activity-specific Janus supplies in heterogeneous catalysis. Angew. Chem. Int. Ed. 61, e202206403 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zehavi, M., Sofer, D., Miloh, T., Velev, O. D. & Yossifon, G. Optically modulated propulsion of electric-field-powered photoconducting Janus particles. Phys. Rev. Appl. 18, 024060 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Dong, R., Zhang, Q., Gao, W., Pei, A. & Ren, B. Extremely environment friendly light-driven TiO2–Au Janus micromotors. ACS Nano 10, 839–844 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, B. et al. Multiwavelength light-responsive Au/B–TiO2 Janus micromotors. ACS Nano 11, 6146–6154 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xuan, M. et al. Close to infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kink, F., Collado, M. P., Wiedbrauk, S., Mayer, P. & Dube, H. Bistable photoswitching of hemithioindigo with inexperienced and pink gentle: entry level to superior molecular digital data processing. Chem. Eur. J. 23, 6237–6243 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erbas-Cakmak, S. et al. Molecular logic gates: the previous, current and future. Chem. Soc. Rev. 47, 2228–2248 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, H. & Ma, Y. Interactions between Janus particles and membranes. Nanoscale 4, 1116–1122 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Huhnstock, R. et al. Translatory and rotatory movement of exchange-bias capped Janus particles managed by dynamic magnetic discipline landscapes. Sci. Rep. 11, 21794 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Claussen, J. C., Franklin, A. D., Ul Haque, A., Porterfield, D. M. & Fisher, T. S. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3, 37–44 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Entanglement-enhanced optomechanical sensing. Nat. Photon. 17, 470–477 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Quantum metrology with strongly interacting spin methods. Phys. Rev. X 10, 031003 (2020).

    CAS 

    Google Scholar
     

  • Greenberger, D. M., Horne, M. A. & Zeilinger, A. Going past Bell’s theorem. Preprint at https://arxiv.org/abs/0712.0921 (2007).

  • Browaeys, A. & Lahaye, T. Many-body physics with individually managed Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cai, R. et al. Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals. Nat. Commun. 14, 2472 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Udvarhelyi, P. et al. Spectrally secure defect qubits with no inversion symmetry for sturdy spin-to-photon interface. Phys. Rev. Appl. 11, 044022 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Pelucchi, E. et al. The potential and world outlook of built-in photonics for quantum applied sciences. Nat. Rev. Phys. 4, 194–208 (2021).

    Article 

    Google Scholar
     

  • Xu, Q. et al. Heterogeneous integration of colloidal quantum dot inks on silicon allows extremely environment friendly and secure infrared photodetectors. ACS Photon. 9, 2792–2801 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yun, H. J. et al. Answer-processable built-in CMOS circuits based mostly on colloidal CuInSe2 quantum dots. Nat. Commun. 11, 5280 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Dong, M. et al. Excessive-speed programmable photonic circuits in a cryogenically appropriate, seen–near-infrared 200 mm CMOS structure. Nat. Photon. 16, 59–65 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kuwahata, A. et al. Magnetometer with nitrogen-vacancy middle in a bulk diamond for detecting magnetic nanoparticles in biomedical purposes. Sci. Rep. 10, 2483 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bromberg, Y., Lahini, Y., Small, E. & Silberberg, Y. Hanbury Brown and Twiss interferometry with interacting photons. Nat. Photon. 4, 721–726 (2010).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lin, X. et al. Electrically-driven single-photon sources based mostly on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Buckley, S., Rivoire, Ok. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell impact: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Varoutsis, S. et al. Restoration of photon indistinguishability within the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Bockelmann, U., Heller, W. & Abstreiter, G. Microphotoluminescence research of single quantum dots. II. Magnetic-field experiments. Phys. Rev. B 55, 4469–4472 (1997).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Saxena, A. et al. Bettering indistinguishability of single photons from colloidal quantum dots utilizing nanocavities. ACS Photon. 6, 3166–3173 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, 1998); https://doi.org/10.1017/CBO9780511524141

  • Klimov, V. I. Nanocrystal Quantum Dots (CRC Press, 2017); https://doi.org/10.1201/9781420079272

  • Shamsi, J., City, A. S., Imran, M., Trizio, L. D. & Manna, L. Steel halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Harris, D. Ok. & Bawendi, M. G. Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211–20213 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Abudayyeh, H. et al. Single photon sources with close to unity assortment efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photon. 6, 036109 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ratchford, D., Shafiei, F., Kim, S., Grey, S. Ok. & Li, X. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett. 11, 1049–1054 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chen, O. et al. Compact high-quality CdSe–CdS core-shell nanocrystals with slender emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Efros, A. L. & Nesbitt, D. J. Origin and management of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Fan, F. et al. Steady-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Xia, P. et al. Sequential co-passivation in inas colloidal quantum dot solids allows environment friendly near-infrared photodetectors. Adv. Mater. 35, 2301842 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, P. et al. Floor passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning. Nat. Commun. 14, 49 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved sturdiness and stability. ACS Power Lett. 3, 641–646 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mir, W. J. et al. Lecithin capping ligands allow ultrastable perovskite-phase CsPbI3 quantum dots for Rec. 2020 bright-red light-emitting diodes. J. Am. Chem. Soc. 144, 13302–13310 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Vivid and secure light-emitting diodes based mostly on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi, C. et al. Biexciton-like Auger blinking in strongly confined CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 14, 5466–5474 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, T. et al. Emulsion-oriented meeting for Janus double-spherical mesoporous nanoparticles as organic logic gates. Nat. Chem. 15, 832–840 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yi, Y., Sanchez, L., Gao, Y. & Yu, Y. Janus particles for organic imaging and sensing. Analyst 141, 3526–3539 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Safaie, N. & Ferrier, R. C. Jr. Janus nanoparticle synthesis: overview, current developments, and purposes. J. Appl. Phys. 127, 170902 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xie, W. et al. Colloidal quantum dots enabling coherent gentle sources for built-in silicon-nitride photonics. IEEE J. Sel. Prime. Quantum Electron. 23, 1–13 (2017).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles