[HTML payload içeriği buraya]
26.6 C
Jakarta
Monday, November 25, 2024

Direct cytosolic supply of siRNA through cell membrane fusion utilizing cholesterol-enriched exosomes


  • Hu, B. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi remedy of hyperlipidemia. Sci. Adv. 8, eabm1418 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. H. & Guo, H. S. RNA silencing: from discovery and elucidation to utility and views. J. Integr. Plant Biol. 64, 476–498 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Focusing on Xkr8 through nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy medication for most cancers immunochemotherapy. Nat. Nanotechnol. 18, 193–204 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. RNA interference-based remedy and its supply methods. Most cancers Metast. Rev. 37, 107–124 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Supply supplies for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, B., Park, J. H. & Sailor, M. J. Rekindling RNAi remedy: supplies design necessities for in vivo siRNA supply. Adv. Mater. 31, e1903637 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, X. et al. Oral supply of nucleic acid therapeutics: challenges, methods, and alternatives. Drug Discov. In the present day 28, 103507 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Sphk2 RNAi nanoparticles suppress tumor development through downregulating most cancers cell derived exosomal microRNA. J. Management. Launch 286, 348–357 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles improve siRNA supply by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 11, e12198 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, J. et al. Focused gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 6, eaaz6108 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dammes, N. et al. Conformation-sensitive focusing on of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blaby-Haas, C. E. & Service provider, S. S. Lysosome-related organelles as mediators of metallic homeostasis. J. Biol. Chem. 289, 28129–28136 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, N., Binzel, D. W., Shu, D., Fu, T.-M. & Guo, P. Focused supply of RNAi to most cancers cells utilizing RNA-ligand displaying exosome. Acta. Pharm. Sin. B 13, 1383–1399 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Okay. et al. A tumor focused chimeric peptide for synergistic endosomal escape and remedy by dual-stage gentle manipulation. Adv. Funct. Mater. 25, 1248–1257 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wittrup, A. et al. Visualizing lipid-formulated siRNA launch from endosomes and goal gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilleron, J. et al. Picture-based evaluation of lipid nanoparticle-mediated siRNA supply, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, J. B. & Siegwart, D. J. Design of artificial supplies for intracellular supply of RNAs: from siRNA-mediated gene silencing to CRISPR/Cas gene enhancing. Nano Res. 11, 5310–5337 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Selby, L. I., Cortez-Jugo, C. M., Such, G. Okay. & Johnston, A. P. R. Nanoescapology: progress towards understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1452 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity towards most cancers. Acta. Pharm. Sin. B 13, 3518–3534 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamerkar, S. et al. Exosomes facilitate therapeutic focusing on of oncogenic KRAS in pancreatic most cancers. Nature 546, 498–503 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann, I. Okay., Wooden, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug supply platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri, R. & LeBleu, V. S. The biology, perform, and biomedical functions of exosomes. Science 367, eaau6977 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article 

    Google Scholar
     

  • Tian, T. et al. Exosome uptake by means of clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 supply. J. Biol. Chem. 289, 22258–22267 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, L. et al. Vesicle trafficking and vesicle fusion: mechanisms, organic capabilities, and their implications for potential illness remedy. Mol. Biomed. 3, 29 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hindi, S. M. et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens goal skeletal muscle for gene supply. Cell 186, 2062–2077.e17 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, X. et al. In situ cell membrane fusion for engineered tumor cells by worm-like nanocell mimics. ACS Nano 14, 7462–7474 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. et al. A plant-derived pure photosynthetic system for enhancing cell anabolism. Nature 612, 546–554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, N. T. et al. Membrane fusion and drug supply with carbon nanotube porins. Proc. Natl Acad. Sci. USA 118, e2016974118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z., Li, Z., Xu, C., Guo, B. & Guo, P. Folate-displaying exosome mediated cytosolic supply of siRNA avoiding endosome trapping. J. Management. Launch 311312, 43–49 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sanders, D. W. et al. SARS-CoV-2 requires ldl cholesterol for viral entry and pathological syncytia formation. eLife 10, e65962 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Completely different areas of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE meeting. Nat. Commun. 11, 1531 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakato, M. et al. ABCA13 dysfunction related to psychiatric problems causes impaired ldl cholesterol trafficking. J. Biol. Chem. 296, 100166 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, J. A., Halverson-Tamboli, R. A. & Rasenick, M. M. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linetti, A. et al. Ldl cholesterol discount impairs exocytosis of synaptic vesicles. J. Cell Sci. 123, 595–605 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lötvall, J. et al. Minimal experimental necessities for definition of extracellular vesicles and their capabilities: a place assertion from the Worldwide Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Düzgüneş, N. & Nir, S. Mechanisms and kinetics of liposome-cell interactions. Adv. Drug Deliv. Rev. 40, 3–18 (1999).

    Article 

    Google Scholar
     

  • Kong, L., Askes, S. H. C., Bonnet, S., Kros, A. & Campbell, F. Temporal management of membrane fusion by means of photolabile PEGylation of liposome membranes. Angew. Chem. Int. Ed. 55, 1396–1400 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Skotland, T., Hessvik, N. P., Sandvig, Okay. & Llorente, A. Exosomal lipid composition and the position of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 60, 9–18 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnarez, C. et al. Dry Martini, a coarse-grained power area for lipid membrane simulations with implicit solvent. J. Chem. Concept Comput. 11, 260–275 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samuel, M. et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence within the main tumor however accelerates most cancers metastasis. Nat. Commun. 12, 3950 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziolkowski, W. et al. Methyl-beta-cyclodextrin induces mitochondrial ldl cholesterol depletion and alters the mitochondrial construction and bioenergetics. FEBS Lett. 584, 4606–4610 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chabanel, A. et al. Affect of ldl cholesterol content material on crimson cell membrane viscoelasticity and fluidity. Biophys. J. 44, 171–176 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Nanoscale imaging and mechanical evaluation of Fc receptor-mediated macrophage phagocytosis towards most cancers cells. Langmuir 30, 1609–1621 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, D. W. et al. Hierarchical micro-/nanostructures from human hair for biomedical functions. Adv. Mater. 30, e1800836 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Qiu, Y. et al. Yolk-shell cationic liposomes overcome mucus and epithelial limitations for enhanced oral drug supply. Big 17, 100221 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Environment friendly base enhancing in methylated areas with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, E. et al. Spatial transcriptomics at subspot decision with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, C. et al. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted supply of siRNAs. Nat. Commun. 12, 2928 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H.-J. et al. Built-in mixture remedy utilizing a ‘sensible’ chemotherapy and microRNA supply system improves outcomes in an orthotopic colorectal most cancers mannequin. Adv. Funct. Mater. 28, 1801118 (2018).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles