[HTML payload içeriği buraya]
28.3 C
Jakarta
Monday, November 25, 2024

Design of a supply car chitosan-based self-assembling: managed launch, excessive hydrophobicity, and protected remedy of plant fungal ailments | Journal of Nanobiotechnology


  • Pennisi E. Armed and harmful. Science. 2010;327:804–9.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL. Rising fungal threats to animal, plant and ecosystem well being. Nature. 2012;484:186–94.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuncel NY. Stabilization of rice bran: a assessment. Meals. 2023;12:12091924.


    Google Scholar
     

  • Godfray HCJ, Mason-D’Croz D, Robinson S. Meals system penalties of a fungal illness epidemic in a significant crop. Philos Trans R Soc B. 2016;371:20150467.

    Article 

    Google Scholar
     

  • Prathi NB, Palit P, Madhu P, Balachandran SM, Madhav MS, Sundaram RM, Mangrauthia SK. Proteomic and transcriptomic approaches to establish resistance and susceptibility associated proteins in contrasting rice genotypes contaminated with fungal pathogen Rhizoctonia solani. Plant Physiol Biochem. 2018;130:258–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller LF, Jiranek J, Brownell M, Coffey S, Grey B, Stahl M, Metcalf CJE. Predicting the results of local weather change on the cross-scale epidemiological dynamics of a fungal plant pathogen. Sci Rep. 2022;12:14823–38.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng YM, Tao Ok, Jin H, Hou TP. Mechanism of motion of novel pyrazole carboxamide containing a diarylamine scaffold in opposition to Rhizoctonia solani. J Agric Meals Chem. 2020;68:11068–76.

    Article 
    PubMed 

    Google Scholar
     

  • Lv P, Chen YL, Wang DW, Wu XW, Li QX, Hua RM. Synthesis, characterization, and anti-fungal analysis of thiolactomycin derivatives. Engineering. 2020;6:560–8.

    Article 
    CAS 

    Google Scholar
     

  • Pan T, Ye J, Li J, Gui Ok, Li J, Feng J, Ma Z, Lei P, Gao Y. Discovery of terpene-derived quaternary ring compounds containing an oxime moiety as potential fungicides. J Agric Meals Chem. 2023;71:3164–72.

    Article 
    CAS 

    Google Scholar
     

  • Sparks TC, Lorsbach BA. Views on the agrochemical business and agrochemical discovery. Pest Handle Sci. 2017;73:672–8.

    Article 
    CAS 

    Google Scholar
     

  • Sedlak DL. The meals–surroundings nexus. Environ Sci Technol. 2019;53:6597–8.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aliferis KA, Jabaji S. Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. J Agric Meals Chem. 2010;58:7604–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett. 2016;15:15–22.

    Article 

    Google Scholar
     

  • Neeraja C, Anil Ok, Purushotham P, Suma Ok, Sarma P, Moerschbacher BM, Podile AR. Biotechnological approaches to develop bacterial chitinases as a bioshield in opposition to fungal ailments of crops. Crit Rev Biotechnol. 2010;30:231–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohanty SP, Hughes DP, Salathé M. Utilizing deep studying for image-based plant illness detection. Entrance Plant Sci. 2016;7:1–10.

    Article 

    Google Scholar
     

  • Chen J, Zhang D, Zeb A, Nanehkaran A. Identification of rice plant ailments utilizing light-weight consideration networks. Professional Syst Appl. 2021;169: 114514.

    Article 

    Google Scholar
     

  • Liu Y, Solar Y, Bai Y, Cheng X, Li H, Chen X, Chen Y. Research on mechanisms of resistance to SDHI fungicide pydiflumetofen in Fusarium fujikuroi. J Agric Meals Chem. 2023;71:14330–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dijksterhuis J, Van Doorn T, Samson R, Postma J. Results of seven fungicides on non-target aquatic fungi. Water Air Soil Pollut. 2011;222:421–5.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McConnell LL, Osorio C, Hofmann T. The way forward for agriculture and meals: sustainable approaches to attain zero starvation. J Agric Meals Chem. 2023;71:13165–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camara MC, Campos EVR, Monteiro RA, Pereira AES, Proenca PLF, Fraceto LF. Growth of stimuli-responsive nano-based pesticides: rising alternatives for agriculture. J Nanobiothchnol. 2019;17:1–19.


    Google Scholar
     

  • Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I, Ranville J, Sinclair C, Spurgeon D, Tiede Ok, Van den Brink PJ. Nanopesticides: guiding rules for regulatory analysis of environmental dangers. J Agric Meals Chem. 2014;62:4227–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang HM, Meng J, Shao WB, Zeng D, Ji J, Wang PY, Zhou X, Qi PY, Liu LW, Yang S. Plant protein-based self-assembling core–shell nanocarrier for successfully controlling plant viruses: proof for nanoparticle supply conduct, plant development promotion, and plant resistance induction. Chem Eng J. 2023;464:142432.

    Article 
    CAS 

    Google Scholar
     

  • Cherian E, Dharmendirakumar M, Baskar G. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol manufacturing by enhanced hydrolysis of agricultural waste. Chin J Catal. 2015;36:1223–9.

    Article 
    CAS 

    Google Scholar
     

  • Jian YQ, Chen X, Ahmed T, Shang QH, Zhang S, Ma ZH, Yin YN. Toxicity and motion mechanisms of silver nanoparticles in opposition to the mycotoxin-producing fungus Fusarium graminearum. J Adv Res. 2022;38:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li XW, Chen YQ, Xu JN, Lynch I, Guo ZL, Xie CJ, Zhang P. Superior nanopesticides: benefit and motion mechanisms. Plant Physiol Biochem. 2023;203:108051.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Han LG, Ma JL, Zhao MJ, Yang BH, Xu M, Gao YJ, Xu QS, Du YG. Synthesis of acylated derivatives of chitosan oligosaccharide and analysis of their potential antifungal brokers on Fusarium oxysporum. Carbohydr Polym. 2023;314:120955.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri M, Asyraf M, Sapuan S, Zainudin E, Sharma S, Abral H, Asrofi M, Syafri E, Sari N, Rafidah M, Zakaria S, Razman M, Majid N, Ramli Z, Azmi A, Bangar S, Ibrahim R. Pure-fiber-reinforced chitosan, chitosan blends and their nanocomposites for varied superior purposes. Polym. 2022;14:1–36.


    Google Scholar
     

  • Tang YX, Wu S, Lin JQ, Cheng LT, Zhou J, Xie J, Huang KX, Wang XY, Yu Y, Chen ZB, Liao GJ, Li C. Nanoparticles focused in opposition to cryptococcal pneumonia by interactions between chitosan and its peptide ligand. Nano Lett. 2018;18:6207–13.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Current advances in chitosan-based supplies: the synthesis, modifications and biomedical purposes. Carbohydr Polym. 2023;321:121318.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar S, Zheng JQ, Liu ZJ, Huang SL, Cheng QK, Fu Y, Cai WH, Chen D, Wang D, Zhou HM, Wang YM. Excessive-strength and recyclable pure chitosan movies manufactured by an ionic liquid assisted roll-forming methodology. Chem Eng J. 2023;463:142368.

    Article 
    CAS 

    Google Scholar
     

  • Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging supplies for the postharvest enchancment of agricultural product: a assessment. Carbohydr Polym. 2023;309:120666.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan ZQ, Wang LS, Qin YK, Li PC. Exercise of chitin/chitosan/chitosan oligosaccharide in opposition to plant pathogenic nematodes and potential modes of software in agriculture: a assessment. Carbohydr Polym. 2023;306:120592.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu JW, Guo YJ, Tang C, Qian YP, Guo CG, Wang ZN, Li LP. Hardwood vessel-inspired chitosan-based sponge with superior compressibility, superfast adsorption and noteworthy recyclability for microplastics removing in water. Chem Eng J. 2023;475:146130.

    Article 
    CAS 

    Google Scholar
     

  • Ghaffari-Bohlouli P, Alimoradi H, Freitas Siqueira Petri D, Moghassemi S, Amorim CA, Nie L, Shavandi A. Assuaging hypoxia by self-generating oxygen and hydrogen peroxide fluorinated chitosan: insights from a kinetic research. Chem Eng J. 2023;473:145072.

    Article 
    CAS 

    Google Scholar
     

  • Chang H, Yhee JY, Jeon S, Shim MK, Yoon HY, Lee S, Kim Ok. In vivo toxicity analysis of tumor focused glycol chitosan nanoparticles in wholesome mice: repeated high-dose of glycol chitosan nanoparticles doubtlessly induce cardiotoxicity. J Nanobiotechnol. 2023;21:1–14.

    Article 

    Google Scholar
     

  • Abrica-González P, Zamora-Justo JA, Sotelo-López A, Vázquez-Martínez GR, Balderas-López JA, Muñoz-Diosdado A, Ibáñez-Hernández M. Gold nanoparticles with chitosan, n-acylated chitosan, and chitosan oligosaccharide as DNA carriers. Nanoscale Res Lett. 2019;14:1–14.

    Article 

    Google Scholar
     

  • Chang WT, Hsieh CH, Hsieh HS, Chen C. Conversion of crude chitosan to an anti-fungal protease by Bacillus cereus. World J Microbiol Biotechnol. 2009;25:375–82.

    Article 
    CAS 

    Google Scholar
     

  • Soltani SMN, Zerafat MM, Sabbaghi S. A comparative research of gelatin and starch-based nano-composite movies modified by nano-cellulose and chitosan for meals packaging purposes. Carbohydr Polym. 2018;189:48–55.

    Article 

    Google Scholar
     

  • Chakravartula SSN, Lourenço RV, Balestra F, Bittante AMQB, Sobral PJA, Rosa MD. Affect of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan energetic movies. Meals Packag Shelf Life. 2020;24:10498.


    Google Scholar
     

  • Cai B, Zou Q, Zuo Y, Mei QJ, Ma JQ, Lin LL, Chen L, Li YB. Injectable gel constructs with regenerative and anti-infective twin results primarily based on assembled chitosan microspheres. ACS Appl Mater Interfaces. 2018;10:25099–112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zeng DL, Ke P, Wang GH, Zhang DK. Synthesis and characterization of magnetic chitosan microspheres for drug supply. RSC Adv. 2020;10:7163–9.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren LL, Xu J, Zhang YC, Zhou J, Chen DH, Chang ZY. Preparation and characterization of porous chitosan microspheres and adsorption efficiency for hexavalent chromium. Int J Biol Macromol. 2019;135:898–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y, Yang ZH, Liu QS, Solar XB, Chen LL, Solar L, Gu W. Design, synthesis, and fungicidal analysis of novel 1,3-benzodioxole-pyrimidine derivatives as potential succinate dehydrogenase inhibitors. J Agric Meals Chem. 2022;70:7360–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Kumar A, Verma A, Mishra AK. Synthesis and docking research of some bioactive N-(benzo[d]thiazol-2-yl)-2-(4-((substituted)phenoxy)acetamide on cyclo-oxygenase-2 enzyme and in vivo analgesic exercise analysis. Lett Drug Des Discovery. 2021;18:396–405.

    Article 
    CAS 

    Google Scholar
     

  • Luo JX, Wu P, Yu XY, Wang RZ. Preparation and solubility of N-succinyl-chitosan. Meals Sci Technol. 2014;39:255–8.

    CAS 

    Google Scholar
     

  • Khalfallah A, Mazzouzi S. Synthesis and dedication of essential micelle focus of betainthioates surfactants. J Surfactants Deterg. 2020;10:12477.


    Google Scholar
     

  • Tryfon P, Kamou NN, Pavlou A, Mourdikoudis S, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Nanocapsules of ZnO nanorods and geraniol as a novel imply for the efficient management of Botrytis cinerea in tomato and cucumber crops. Crops. 2023;12:12051074.

    Article 

    Google Scholar
     

  • Sahariah P, Masson M. Antimicrobial chitosan and chitosan derivatives: a assessment of the construction−exercise relationship. Biomacromol. 2017;18:3846–68.

    Article 
    CAS 

    Google Scholar
     

  • Dartora VFC, Passos JS, Osorio B, Hung RC, Nguyen M, Wang AJ, Panitch A. Chitosan hydrogels with MK2 inhibitor peptide-loaded nanoparticles to deal with atopic dermatitis. J Managed Launch. 2023;362:591–605.

    Article 
    CAS 

    Google Scholar
     

  • Ji QT, Hu DK, Mu XF, Tian XX, Zhou L, Yao S, Wang XH, Xiang SZ, Ye HJ, Fan LJ, Wang PY. Cucurbit[7]uril-mediated supramolecular bactericidal nanoparticles: their meeting course of, managed launch, and protected remedy of intractable plant bacterial ailments. Nano Lett. 2022;22:4839–47.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Han RY, Ye HC, Zhou Y, Zhang ZK, Yuan EL, Feng G, Guo YX. Impact of pseudolaric acid B on biochemical and physiologic traits in Colletotrichum gloeosporioides. Pestic Biochem Physiol. 2017;09:75–82.


    Google Scholar
     

  • Music XM, Zhu XY, Li T, Liang C, Zhang M, Hu Z, Shao Y, Yang L, Tao J, Solar RF. Dehydrozingerone impressed discovery of potential broadspectrum fungicidal brokers as ergosterol biosynthesis inhibitors. J Agric Meals Chem. 2019;67:11354–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan W, Wang X, Li Ok, Li TX, Wang JJ, Yao KC. Design, synthesis, and antifungal exercise of carboxamide derivatives possessing 1,2,3-triazole as potential succinate dehydrogenase inhibitors. Pestic Biochem Physiol. 2019;156:160–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XB, Wang MQ, Han L, Jin F, Jiao J, Chen M, Yang CL, Xue W. Novel pyrazole-4-acetohydrazide derivatives doubtlessly focusing on fungal succinate dehydrogenase: design, synthesis, three-dimensional quantitative construction–exercise relationship, and molecular docking. J Agric Meals Chem. 2021;69:9557–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin XD, Ma KY, Wang YL, Solar Y, Shang XF, Zhao ZM, Wang RX, Chen YJ, Zhu JK, Liu YQ. Design, synthesis, and antifungal analysis of 8-hydroxyquinoline metallic complexes in opposition to phytopathogenic fungi. J Agric Meals Chem. 2020;68:11096–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Q, Tang XM, Chen S, Zhan WL, Hu D, Zhou R, Solar N, Wu YJ, Xue W. Design, synthesis and antifungal exercise of novel chalcone derivatives containing piperazine fragment. J Agric Meals Chem. 2022;70:1029–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu B, Chen W, Wu ZM, Lengthy Y, Li KT. A novel and efficient Streptomyces sp. N2 in opposition to varied phytopathogenic fungi. Appl Biochem Biotechnol. 2015;177:1338–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang SW, Wu ZM, Yang Y, Li KT. Antifungal motion of antifungal mycin N2 in opposition to Rhizoctonia solani by disrupting cell membrane and inhibiting succinate dehydrogenase. Curr Microbiol. 2020;77:254–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tosi S, Kostadinova N, Krumova E, Pashova S, Dishliiska V, Spassova B, Vassilev S, Angelova M. Antioxidant enzyme exercise of filamentous fungi remoted from livingston island, maritime antarctica. Polar Biol. 2010;33:1227–37.

    Article 

    Google Scholar
     

  • Guo X, Chen J, Gao M, Li D. An aminobutyric acid transaminase in zea mays interacts with Rhizoctonia solani cellulase to take part in illness resistance. Entrance Plant Sci. 2022;13:860170.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang XB, Wang A, Qiu LL, Chen M, Lu AM, Li GH, Yang CL, Xue W. Expedient discovery for novel antifungal leads focusing on succinate dehydrogenase: pyrazole-4-formylhydrazide derivatives bearing a diphenyl ether fragment. J Agric Meals Chem. 2020;68:14426–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christou C, Agapiou A, Kokkinofta R. Use of FTIR spectroscopy and chemometrics for the classification of carobs origin. J Adv Res. 2018;10:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urnao R, Pantelopulos GA, Straub JE. Aerosol-OT surfactant kinds secure reverse micelles in apolar solvent within the absence of water. J Phys Chem B. 2019;123:2546–57.

    Article 

    Google Scholar
     

  • Sharma D, Singh J. Chitosan polymer and their nanomicelles for nonviral gene supply purposes. Bioconjugate Chem. 2017;28:2772–83.

    Article 
    CAS 

    Google Scholar
     

  • Sultana AA, Rahman MH, Pleasure MTR, Rana S, Khan JM, Kumar D, Ahmad A, Hoque MA, Rahman MM, Kabir SE. Interplay of sodium alginate biopolymer with sodium dodecyl sulfate in aqueous medium and totally different additive options at a number of temperatures. Chem Eng Comm. 2023;97:1–16.


    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles