Park, Okay. The start of the top of the nanomedicine hype. J. Management. Launch 305, 221–222 (2019).
Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Most cancers nanomedicine. Nat. Rev. Most cancers 22, 550–556 (2022).
Youn, Y. S. & Bae, Y. H. Views on the previous, current, and way forward for most cancers nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).
Leong, H. S. et al. On the difficulty of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).
Lammers, T. et al. Most cancers nanomedicine: is concentrating on our goal? Nat. Rev. Mater. 1, 16069 (2016).
Barenholz, Y. Doxil®—the primary FDA-approved nano-drug: classes discovered. J. Management. Launch 160, 117–134 (2012).
Shan, X. et al. Present approaches of nanomedicines out there and varied stage of scientific translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).
COVID-19 vaccination, world knowledge. WHO https://knowledge.who.int/dashboards/covid19/vaccines?n=c (2024).
Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).
Milane, L. & Amiji, M. Medical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: influence on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).
Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to extend the effectivity of translating nanomedicine formulations to sufferers. Knowledgeable Opin. Drug Discov. 16, 235–254 (2021).
Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Supposed for Drug Supply (ed. McNeil, S. E.) 3–16 (Springer, 2018).
Metselaar, J. M. & Lammers, T. Challenges in nanomedicine scientific translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).
Tang, H. et al. Ldl cholesterol modulates the physiological response to nanoparticles by altering the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).
Hare, J. I. et al. Challenges and methods in anti-cancer nanomedicine improvement: an trade perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).
Germain, M. et al. Delivering the ability of nanomedicine to sufferers in the present day. J. Management. Launch 326, 164–171 (2020).
Zhu, G. H., Grey, A. B. C. & Patra, H. Okay. Nanomedicine: controlling nanoparticle clearance for translational success. Developments Pharmacol. Sci. 43, 709–711 (2022).
Kendall, M. & Lynch, I. Lengthy-term monitoring for nanomedicine implants and medicines. Nat. Nanotechnol. 11, 206–210 (2016).
Crist, R. M. et al. Widespread pitfalls in nanotechnology: classes discovered from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).
Li, J. & Kataoka, Okay. Chemo-physical methods to advance the in vivo performance of focused nanomedicine: the subsequent technology. J. Am. Chem. Soc. 143, 538–559 (2020).
Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions within the improvement of nanocarriers: an revolutionary statistical method for formulation choices. Sci. Rep. 9, 10738 (2019).
Wang, N., Solar, H., Dong, J. & Ouyang, D. PharmDE: a brand new skilled system for drug–excipient compatibility analysis. Int. J. Pharm. 607, 120962 (2021).
Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the particular composition of polymeric nanocapsules: a high quality management evaluation. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).
Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparability of liposomal formulations of doxorubicin with drug administered in free kind: altering toxicity profiles. Drug. Saf. 24, 903–920 (2001).
Harrington, Okay. J. et al. Section I–II research of pegylated liposomal cisplatin (SPI-077) in sufferers with inoperable head and neck most cancers. Ann. Oncol. 12, 493–496 (2001).
Troiano, G. et al. A top quality by design method to creating and manufacturing polymeric nanoparticle drug merchandise. AAPS J. 18, 1354–1365 (2016).
Mast, M.-P. et al. Nanomedicine on the crossroads—a fast information for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).
Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo hyperlink—trade perspective. AAPS 21, 19 (2019).
Yuan, D. et al. Physiologically based mostly pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).
Jung, M. et al. Advances in 3D bioprinting for most cancers biology and precision drugs: from matrix design to utility. Adv. Healthc. Mater. 11, 2200690 (2022).
Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).
Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a pattern evaluation of in vitro and in vivo research. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).
Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the lacking hyperlink? Biotechnol. Adv. 35, 889–904 (2017).
Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Management. Launch 354, 794–809 (2023).
He, H. et al. Survey of scientific translation of most cancers nanomedicines—classes discovered from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).
Tong, F., Wang, Y. & Gao, H. Progress and challenges within the translation of most cancers nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).
Zhang, P. et al. Most cancers nanomedicine towards scientific translation: obstacles, alternatives, and future prospects. Med 4, 147–167 (2023).
Hoffman, R. M. Affected person-derived orthotopic xenografts: higher mimic of metastasis than subcutaneous xenografts. Nat. Rev. Most cancers 15, 451–452 (2015).
Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning past animal fashions with human cells, organoids, and AI/ML-based approaches. J. Clin. Make investments. 133, e175824 (2023).
Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. Easy methods to design preclinical research in nanomedicine and cell remedy to maximise the prospects of scientific translation. Nat. Biomed. Eng. 2, 797–809 (2018).
Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does analysis reproducibility imply? Sci. Transl. Med. 8, 341ps12 (2016).
Ke, W. et al. Developments and patterns in most cancers nanotechnology analysis: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).
Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up applied sciences: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).
Liu, X., Huang, P., Yang, R. & Deng, H. mRNA most cancers vaccines: development and boosting methods. ACS Nano 17, 19550–19580 (2023).
Pan, S. et al. The potential of mRNA vaccines in most cancers nanomedicine and immunotherapy. Developments Immunol. 45, 20–31 (2024).
Shin, S. et al. Nanoparticle-based chimeric antigen receptor remedy for most cancers immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).
Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology improvement to beat present roadblocks in CAR-T remedy for stable tumors. Entrance. Immunol. 13, 849759 (2022).
Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell remedy in treating stable tumor. Pharmacol. Res. 184, 106454 (2022).
Chen, Y. et al. Environment friendly non-viral CAR-T cell technology by way of silicon-nanotube-mediated transfection. Mater. Right this moment 63, 8–17 (2023).
Hu, T., Kumar, A. R. Okay., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Strategies https://doi.org/10.1002/smtd.202301300 (2023).
López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Customized most cancers nanomedicine: overcoming organic boundaries for intracellular supply of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).
Solar, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Management. Launch 164, 156–169 (2012).
DepoCyte—withdrawal of utility for variation to advertising and marketing authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).
Ramanathan, R. Okay. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in sufferers with superior stable tumors: a pilot research. Clin. Most cancers Res. 23, 3638–3648 (2017).
Might, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).
Angeli, F. et al. Optimum use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).
Shitara, Okay. et al. Nab-paclitaxel versus solvent-based paclitaxel in sufferers with beforehand handled superior gastric most cancers (ABSOLUTE): an open-label, randomised, non-inferiority, part 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).
Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, part III non-inferiority research evaluating NK105 and paclitaxel in metastatic or recurrent breast most cancers sufferers. Br. J. Most cancers 120, 475–480 (2019).
Kosaka, Y. et al. Multicenter randomized open-label part II scientific research evaluating outcomes of NK105 and paclitaxel in superior or recurrent breast most cancers. Int. J. Nanomed. 17, 4567 (2022).
Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in sufferers with superior stable tumors utilizing 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).
Atrafi, F. et al. A part I dose-finding and pharmacokinetics research of CPC634 (nanoparticle entrapped docetaxel) in sufferers with superior stable tumors. J. Clin. Oncol. 37, 3026–3026 (2019).
Atrafi, F. et al. Intratumoral comparability of nanoparticle entrapped docetaxel (CPC634) with typical docetaxel in sufferers with stable tumors. Clin. Most cancers Res. 26, 3537–3545 (2020).
Ingrid, B. et al. CINOVA: a part II research of CPC634 (nanoparticulate docetaxel) in sufferers with platinum resistant recurrent ovarian most cancers. Int. J. Gynecol. Most cancers 33, 1247 (2023).
Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory hole. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).
Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for scientific utility: present and future views. Biomater. Sci. 8, 4653–4664 (2020).
Hemmrich, E. & McNeil, S. Lively ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).
Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we prepared? Am. J. Well being Syst. Pharm. 78, 1047–1056 (2021).
Fogel, D. B. Components related to scientific trials that fail and alternatives for enhancing the chance of success: a overview. Contemp. Clin. Trials Commun. 11, 156–164 (2018).
Middle for Drug Analysis and Analysis Drug Merchandise, Together with Organic Merchandise, that Comprise Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain
Van Norman, G. A. Medication, gadgets, and the FDA: Half 1: an outline of approval processes for medication. J. Am. Coll. Cardiol. 1, 170–179 (2016).
Klein, Okay. et al. A practical regulatory method for complicated generics via the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).
Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The beginning-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).
Park, A. et al. Fast response via the entrepreneurial capabilities of educational scientists. Nat. Nanotechnol. 17, 802–807 (2022).
Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing college spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).
Dayton, L. Coronavirus vaccine front-runner Moderna places MIT chemist-entrepreneur Robert Langer within the highlight. Nature Index https://www.nature.com/nature-index/information/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).
Langer, R. A private account of translating discoveries in a tutorial lab. Nat. Biotechnol. 31, 487–489 (2013).
Prokesch, S. The Edison of medication. Harv. Bus. Rev. 95, 134–143 (2017).
Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to sufferers: a sensible information. Nanomedicine 11, 983–992 (2015).
Chaudhary, N., Weissman, D. & Whitehead, Okay. A. mRNA vaccines for infectious illnesses: rules, supply and scientific translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).
Gold, E. R. What the COVID-19 pandemic revealed about mental property. Nat. Biotechnol. 40, 1428–1430 (2022).
Faria, M. et al. Minimal data reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).
Kilkenny, C. et al. Enhancing bioscience analysis reporting: the ARRIVE tips for reporting animal analysis. J. Pharmacol. Pharmacother. 1, 94–99 (2010).
Middle for Drug Analysis and Analysis & Middle for Biologics Analysis and Analysis Steering for Business: Surroundings Evaluation of Human Drug and Biologics Purposes (US Meals & Drug Administration, 1998); https://www.fda.gov/media/70809/obtain
Middle for Drug Analysis and Analysis Steering for Business: Drug Merchandise, Together with Organic Merchandise, that Comprise Nanomaterials (US Meals & Drug Administration, 2022); https://www.fda.gov/media/157812/obtain
Chetwynd, A. J., Wheeler, Okay. E. & Lynch, I. Finest observe in reporting corona research: Minimal details about Nanomaterial Biocorona Experiments (MINBE). Nano Right this moment 28, 100758 (2019).
Hadjidemetriou, M. et al. In vivo biomolecule corona round blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).
Ban, Z. et al. Machine studying predicts the practical composition of the protein corona and the mobile recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).
Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine improvement. Matter 6, 1071–1081 (2023).
Arden, N. S. et al. Business 4.0 for pharmaceutical manufacturing: making ready for the sensible factories of the longer term. Int. J. Pharm. 602, 120554 (2021).
Younger, H. et al. Towards the scalable, speedy, reproducible, and cost-effective synthesis of personalised nanomedicines on the level of care. Nano Lett. 24, 920–928 (2024).
de Vlieger, J. S. B. et al. Report of the AAPS steerage discussion board on the FDA draft steerage for trade: ‘drug merchandise, together with organic merchandise, that comprise nanomaterials’. AAPS J. 21, 56 (2019).
Marchant, G. E., Sylvester, D. J., Abbott, Okay. W. & Danforth, T. L. Worldwide harmonization of regulation of nanomedicine. Stud. Ethics Regulation Technol. https://doi.org/10.2202/1941-6008.1120 (2010).