Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo most cancers concentrating on and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).
Hong, G., Antaris, A. L. & Dai, H. Close to-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).
Waterhouse, D. J., Fitzpatrick, C. R. M., Pogue, B. W., O’Connor, J. P. B. & Bohndiek, S. E. A roadmap for the medical implementation of optical-imaging biomarkers. Nat. Biomed. Eng. 3, 339–353 (2019).
So, M. Okay., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–343 (2006).
Jiang, Y. & Pu, Okay. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).
Miao, Q. et al. Molecular afterglow imaging with shiny, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).
le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).
Jiang, Y. et al. A generic method in direction of afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).
Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for delicate molecular imaging in vivo. Nat. Commun. 11, 446 (2020).
Qu, R. et al. Afterglow/photothermal bifunctional polymeric nanoparticles for exact postbreast-conserving surgical procedure adjuvant remedy and early recurrence theranostic. Nano Lett. 23, 4216–4225 (2023).
Chen, W. et al. Close to-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).
Ni, X. et al. Close to-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumour-to-liver sign ratio for promoted image-guided most cancers surgical procedure. Nano Lett. 19, 318–330 (2019).
Wei, X. et al. Leveraging long-distance singlet-oxygen switch for bienzyme-locked afterglow imaging of intratumoral granule enzymes. J. Am. Chem. Soc. 146, 17393–17403 (2024).
Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).
Chen, H. et al. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic remedy of deep-seated tumours. Mater. Horiz. 4, 1092–1101 (2017).
Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).
Zhang, C. et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic remedy with diminished oxygen dependence. Angew. Chem. Int. Ed. 54, 1770–1774 (2015).
Li, J., Cheng, F., Huang, H., Li, L. & Zhu, J. J. Nanomaterial-based activatable imaging probes: from design to organic functions. Chem. Soc. Rev. 44, 7855–7880 (2015).
Wang, X. & Pu, Okay. Molecular substrates for the development of afterglow imaging probes in illness prognosis and remedy. Chem. Soc. Rev. 52, 4549–4566 (2023).
Huang, J. et al. Molecular radio afterglow probes for most cancers radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).
Huang, J. et al. Chemiluminescent probes with long-lasting excessive brightness for in vivo imaging of neutrophils. Angew. Chem. Int. Ed. 61, e202203235 (2022).
Wei, X. et al. Extremely shiny near-infrared chemiluminescent probes for most cancers imaging and laparotomy. Angew. Chem. Int. Ed. 62, e202213791 (2023).
Yang, Z. et al. Latest advances in natural thermally activated delayed fluorescence supplies. Chem. Soc. Rev. 46, 915–1016 (2017).
Ma, W. et al. Thermally activated delayed fluorescence (TADF) natural molecules for environment friendly X-ray scintillation and imaging. Nat. Mater. 21, 210–216 (2022).
Hong, X. et al. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white natural light-emitting diodes. Chem 8, 1705–1719 (2022).
Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer technique. Nat. Rev. Drug Discov. 12, 931–947 (2013).
Lippert, A. R., Van de Bittner, G. C. & Chang, C. J. Boronate oxidation as a bioorthogonal response method for learning the chemistry of hydrogen peroxide in residing programs. Acc. Chem. Res. 44, 793–804 (2011).
Chen, Z. Z. et al. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in extremely passive concentrating on deep-seated hepatic tumours. Adv. Mater. 31, e1905087 (2019).
Lo, S. S. et al. Stereotactic physique radiation remedy: a novel remedy modality. Nat. Rev. Clin. Oncol. 7, 44–54 (2010).
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).
Hymes, S. R., Strom, E. A. & Fife, C. Radiation dermatitis: medical presentation, pathophysiology, and remedy 2006. J. Am. Acad. Dermatol. 54, 28–46 (2006).