Peng, G. et al. Diagnosing lung most cancers in exhaled breath utilizing gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).
Strauch, M. et al. Greater than apples and oranges—detecting most cancers with a fruit fly’s antenna. Sci. Rep. 4, 3576 (2014).
Raman, B., Meier, D. C., Evju, J. Ok. & Semancik, S. Designing and optimizing microsensor arrays for recognizing chemical hazards in complicated environments. Sens. Actuators B 137, 617–629 (2009).
Dunn, M. & Degenhardt, L. Using drug detection canine in Sydney, Australia. Drug Alcohol Rev. 28, 658–662 (2009).
Nagle, H. T., Gutierrez-Osuna, R., Kermani, B. G. & Schiffman, S. S. in Handbook of Machine Olfaction: Digital Nostril Know-how (eds Pearce, T. et al.) chap. 17, 419–444 (Wiley On-line Library, 2002).
Brattoli, M. et al. Odour detection strategies: olfactometry and chemical sensors. Sensors (Basel) 11, 5290–5322 (2011).
Terutsuki, D. et al. Actual-time odor focus and path recognition for environment friendly odor supply localization utilizing a small bio-hybrid drone. Sens. Actuators B 339, 129770 (2021).
Saha, D. et al. Explosive sensing with insect-based biorobots. Biosens. Bioelectron. X 6, 100050 (2020).
Ma, S., Li, B. & Li, Y. The steering leap management of a locust bio-robot through asynchronous hindleg kickings. Adv. Intell. Syst. 4, 2200082 (2022).
Le, D. L. et al. Neurotransmitter-loaded nanocapsule triggers on-demand muscle leisure in dwelling organism. ACS Appl. Mater. Interfaces 10, 37812–37819 (2018).
Lorig, T. S. On the similarity of odor and language notion. Neurosci. Biobehav. Rev. 23, 391–398 (1999).
Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16, 1830–1839 (2013).
Saha, D. et al. Partaking and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus. Nat. Commun. 8, 15413 (2017).
Lizbinski, Ok. M. & Dacks, A. M. Intrinsic and extrinsic neuromodulation of olfactory processing. Entrance. Cell. Neurosci. 11, 424 (2018).
Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Entrance. Neurosci. 10, 69 (2016).
Acarón Ledesma, H. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).
Benfenati, F. & Lanzani, G. Scientific translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).
Zhang, Y. et al. Transcranial nongenetic neuromodulation through bioinspired vesicle-enabled exact NIR-II optical stimulation. Adv. Mater. https://doi.org/10.1002/adma.202208601 (2022).
Garcia-Etxarri, A. & Yuste, R. Time for nanoneuro. Nat. Strategies 18, 1287–1293 (2021).
Yoo, S., Park, J.-H. & Nam, Y. Single-cell photothermal neuromodulation for practical mapping of neural networks. ACS Nano 13, 544–551 (2018).
Rastogi, S. Ok. et al. Distant nongenetic optical modulation of neuronal exercise utilizing fuzzy graphene. Proc. Natl Acad. Sci. USA 117, 13339 (2020).
Yoo, S., Hong, S., Choi, Y., Park, J.-H. & Nam, Y. Photothermal inhibition of neural exercise with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014).
Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).
Kang, H., Lee, G.-H., Jung, H., Lee, J. W. & Nam, Y. Inkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulation. ACS Nano 12, 1128–1138 (2018).
Lee, J. W., Jung, H., Cho, H. H., Lee, J. H. & Nam, Y. Gold nanostar-mediated neural exercise management utilizing plasmonic photothermal results. Biomaterials 153, 59–69 (2018).
Eom, Ok. et al. Enhanced infrared neural stimulation utilizing localized floor plasmon resonance of gold nanorods. Small 10, 3853–3857 (2014).
Yoo, S., Kim, R., Park, J.-H. & Nam, Y. Electro-optical neural platform built-in with nanoplasmonic inhibition interface. ACS Nano 10, 4274–4281 (2016).
Gholami Derami, H. et al. Reversible photothermal modulation {of electrical} exercise of excitable cells utilizing polydopamine nanoparticles. Adv. Mater. 33, 2008809 (2021).
Tan, Q. et al. Inorganic nano-drug supply programs for crossing the blood–mind barrier: advances and challenges. Coord. Chem. Rev. 494, 215344 (2023).
Sebesta, C. et al. Subsecond multichannel magnetic management of choose neural circuits in freely transferring flies. Nat. Mater. 21, 951–958 (2022).
Hescham, S.-A. et al. Magnetothermal nanoparticle expertise alleviates parkinsonian-like signs in mice. Nat. Commun. 12, 5569 (2021).
Zhang, Y. et al. Transcranial nongenetic neuromodulation through bioinspired vesicle-enabled exact NIR-II optical stimulation. Adv. Mater. 35, 2208601 (2023).
Sou, Ok., Le, D. L. & Sato, H. Nanocapsules for programmed neurotransmitter launch: towards synthetic extracellular synaptic vesicles. Small 15, 1900132 (2019).
Roeder, T., Seifert, M., Kähler, C. & Gewecke, M. Tyramine and octopamine: antagonistic modulators of habits and metabolism. Arch. Insect Biochem. Physiol. 54, 1–13 (2003).
Taylor, P. & Radic, Z. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34, 281–320 (1994).
Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug supply. Adv. Funct. Mater. 30, 1902634 (2020).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Ai, Ok., Liu, Y., Ruan, C., Lu, L. & Lu, G. Sp2 C‐dominant N‐doped carbon sub‐micrometer spheres with a tunable dimension: a flexible platform for extremely environment friendly oxygen‐discount catalysts. Adv. Mater. 25, 998–1003 (2013).
Wang, C., Ma, Z., Wang, T. & Su, Z. Synthesis, meeting, and biofunctionalization of silica‐coated gold nanorods for colorimetric biosensing. Adv. Funct. Mater. 16, 1673–1678 (2006).
Chen, X. et al. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym. Bull. 78, 4439–4452 (2021).
Dante, S. et al. Selective concentrating on of neurons with inorganic nanoparticles: revealing the essential function of nanoparticle floor cost. ACS Nano 11, 6630–6640 (2017).
Patel, M., Rangan, A. V. & Cai, D. A big-scale mannequin of the locust antennal lobe. J. Comput. Neurosci. 27, 553–567 (2009).
Saha, D., Leong, Ok., Katta, N. & Raman, B. Multi-unit recording strategies to characterize neural exercise within the locust (Schistocerca americana) olfactory circuits. J. Visualized Exp. 71, e50139 (2013).
Rein, J., Mustard, J. A., Strauch, M., Smith, B. H. & Galizia, C. G. Octopamine modulates exercise of neural networks within the honey bee antennal lobe. J. Comp. Physiol. A 199, 947–962 (2013).
Roeder, T. Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561 (1999).
Hammer, M. & Menzel, R. A number of websites of associative odor studying as revealed by native mind microinjections of octopamine in honeybees. Study. Mem. 5, 146–156 (1998).
Bazhenov, M. et al. Mannequin of mobile and community mechanisms for odor-evoked temporal patterning within the locust antennal lobe. Neuron 30, 569–581 (2001).
Francia, S. et al. Gentle-induced cost technology in polymeric nanoparticles restores imaginative and prescient in advanced-stage retinitis pigmentosa rats. Nat. Commun. 13, 3677 (2022).
Moon, G. D. et al. A brand new theranostic system primarily based on gold nanocages and phase-change supplies with distinctive options for photoacoustic imaging and managed launch. J. Am. Chem. Soc. 133, 4762–4765 (2011).
Brown, S. L., Joseph, J. & Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural illustration. Nat. Neurosci. 8, 1568–1576 (2005).
Pouzat, C., Mazor, O. & Laurent, G. Utilizing noise signature to optimize spike-sorting and to evaluate neuronal classification high quality. J. Neurosci. Strategies 122, 43–57 (2002).