[HTML payload içeriği buraya]
31.7 C
Jakarta
Sunday, November 24, 2024

Augmenting insect olfaction efficiency by means of nano-neuromodulation


  • Peng, G. et al. Diagnosing lung most cancers in exhaled breath utilizing gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Strauch, M. et al. Greater than apples and oranges—detecting most cancers with a fruit fly’s antenna. Sci. Rep. 4, 3576 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Raman, B., Meier, D. C., Evju, J. Ok. & Semancik, S. Designing and optimizing microsensor arrays for recognizing chemical hazards in complicated environments. Sens. Actuators B 137, 617–629 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dunn, M. & Degenhardt, L. Using drug detection canine in Sydney, Australia. Drug Alcohol Rev. 28, 658–662 (2009).

    Article 

    Google Scholar
     

  • Nagle, H. T., Gutierrez-Osuna, R., Kermani, B. G. & Schiffman, S. S. in Handbook of Machine Olfaction: Digital Nostril Know-how (eds Pearce, T. et al.) chap. 17, 419–444 (Wiley On-line Library, 2002).

  • Brattoli, M. et al. Odour detection strategies: olfactometry and chemical sensors. Sensors (Basel) 11, 5290–5322 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Terutsuki, D. et al. Actual-time odor focus and path recognition for environment friendly odor supply localization utilizing a small bio-hybrid drone. Sens. Actuators B 339, 129770 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saha, D. et al. Explosive sensing with insect-based biorobots. Biosens. Bioelectron. X 6, 100050 (2020).

    CAS 

    Google Scholar
     

  • Ma, S., Li, B. & Li, Y. The steering leap management of a locust bio-robot through asynchronous hindleg kickings. Adv. Intell. Syst. 4, 2200082 (2022).

    Article 

    Google Scholar
     

  • Le, D. L. et al. Neurotransmitter-loaded nanocapsule triggers on-demand muscle leisure in dwelling organism. ACS Appl. Mater. Interfaces 10, 37812–37819 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lorig, T. S. On the similarity of odor and language notion. Neurosci. Biobehav. Rev. 23, 391–398 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16, 1830–1839 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Saha, D. et al. Partaking and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus. Nat. Commun. 8, 15413 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lizbinski, Ok. M. & Dacks, A. M. Intrinsic and extrinsic neuromodulation of olfactory processing. Entrance. Cell. Neurosci. 11, 424 (2018).

    Article 

    Google Scholar
     

  • Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Entrance. Neurosci. 10, 69 (2016).

    Article 

    Google Scholar
     

  • Acarón Ledesma, H. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article 

    Google Scholar
     

  • Benfenati, F. & Lanzani, G. Scientific translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Transcranial nongenetic neuromodulation through bioinspired vesicle-enabled exact NIR-II optical stimulation. Adv. Mater. https://doi.org/10.1002/adma.202208601 (2022).

  • Garcia-Etxarri, A. & Yuste, R. Time for nanoneuro. Nat. Strategies 18, 1287–1293 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, S., Park, J.-H. & Nam, Y. Single-cell photothermal neuromodulation for practical mapping of neural networks. ACS Nano 13, 544–551 (2018).

    Article 

    Google Scholar
     

  • Rastogi, S. Ok. et al. Distant nongenetic optical modulation of neuronal exercise utilizing fuzzy graphene. Proc. Natl Acad. Sci. USA 117, 13339 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, S., Hong, S., Choi, Y., Park, J.-H. & Nam, Y. Photothermal inhibition of neural exercise with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kang, H., Lee, G.-H., Jung, H., Lee, J. W. & Nam, Y. Inkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulation. ACS Nano 12, 1128–1138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. W., Jung, H., Cho, H. H., Lee, J. H. & Nam, Y. Gold nanostar-mediated neural exercise management utilizing plasmonic photothermal results. Biomaterials 153, 59–69 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Eom, Ok. et al. Enhanced infrared neural stimulation utilizing localized floor plasmon resonance of gold nanorods. Small 10, 3853–3857 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, S., Kim, R., Park, J.-H. & Nam, Y. Electro-optical neural platform built-in with nanoplasmonic inhibition interface. ACS Nano 10, 4274–4281 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gholami Derami, H. et al. Reversible photothermal modulation {of electrical} exercise of excitable cells utilizing polydopamine nanoparticles. Adv. Mater. 33, 2008809 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tan, Q. et al. Inorganic nano-drug supply programs for crossing the blood–mind barrier: advances and challenges. Coord. Chem. Rev. 494, 215344 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sebesta, C. et al. Subsecond multichannel magnetic management of choose neural circuits in freely transferring flies. Nat. Mater. 21, 951–958 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hescham, S.-A. et al. Magnetothermal nanoparticle expertise alleviates parkinsonian-like signs in mice. Nat. Commun. 12, 5569 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Transcranial nongenetic neuromodulation through bioinspired vesicle-enabled exact NIR-II optical stimulation. Adv. Mater. 35, 2208601 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sou, Ok., Le, D. L. & Sato, H. Nanocapsules for programmed neurotransmitter launch: towards synthetic extracellular synaptic vesicles. Small 15, 1900132 (2019).

    Article 

    Google Scholar
     

  • Roeder, T., Seifert, M., Kähler, C. & Gewecke, M. Tyramine and octopamine: antagonistic modulators of habits and metabolism. Arch. Insect Biochem. Physiol. 54, 1–13 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, P. & Radic, Z. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34, 281–320 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug supply. Adv. Funct. Mater. 30, 1902634 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ai, Ok., Liu, Y., Ruan, C., Lu, L. & Lu, G. Sp2 C‐dominant N‐doped carbon sub‐micrometer spheres with a tunable dimension: a flexible platform for extremely environment friendly oxygen‐discount catalysts. Adv. Mater. 25, 998–1003 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C., Ma, Z., Wang, T. & Su, Z. Synthesis, meeting, and biofunctionalization of silica‐coated gold nanorods for colorimetric biosensing. Adv. Funct. Mater. 16, 1673–1678 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym. Bull. 78, 4439–4452 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dante, S. et al. Selective concentrating on of neurons with inorganic nanoparticles: revealing the essential function of nanoparticle floor cost. ACS Nano 11, 6630–6640 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Patel, M., Rangan, A. V. & Cai, D. A big-scale mannequin of the locust antennal lobe. J. Comput. Neurosci. 27, 553–567 (2009).

    Article 

    Google Scholar
     

  • Saha, D., Leong, Ok., Katta, N. & Raman, B. Multi-unit recording strategies to characterize neural exercise within the locust (Schistocerca americana) olfactory circuits. J. Visualized Exp. 71, e50139 (2013).


    Google Scholar
     

  • Rein, J., Mustard, J. A., Strauch, M., Smith, B. H. & Galizia, C. G. Octopamine modulates exercise of neural networks within the honey bee antennal lobe. J. Comp. Physiol. A 199, 947–962 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Roeder, T. Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hammer, M. & Menzel, R. A number of websites of associative odor studying as revealed by native mind microinjections of octopamine in honeybees. Study. Mem. 5, 146–156 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Bazhenov, M. et al. Mannequin of mobile and community mechanisms for odor-evoked temporal patterning within the locust antennal lobe. Neuron 30, 569–581 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Francia, S. et al. Gentle-induced cost technology in polymeric nanoparticles restores imaginative and prescient in advanced-stage retinitis pigmentosa rats. Nat. Commun. 13, 3677 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moon, G. D. et al. A brand new theranostic system primarily based on gold nanocages and phase-change supplies with distinctive options for photoacoustic imaging and managed launch. J. Am. Chem. Soc. 133, 4762–4765 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Brown, S. L., Joseph, J. & Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural illustration. Nat. Neurosci. 8, 1568–1576 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pouzat, C., Mazor, O. & Laurent, G. Utilizing noise signature to optimize spike-sorting and to evaluate neuronal classification high quality. J. Neurosci. Strategies 122, 43–57 (2002).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles