Lambe, J. & McCarthy, S. L. Mild emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).
Du, W., Wang, T., Chu, H.-S. & Nijhuis, C. A. Extremely environment friendly on-chip direct digital–plasmonic transducers. Nat. Photon. 11, 623–627 (2017).
Qian, H. et al. Environment friendly gentle technology from enhanced inelastic electron tunnelling. Nat. Photon. 12, 485–488 (2018).
Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nat. Nanotechnol. 10, 1058–1063 (2015).
Flaxer, E., Sneh, O. & Cheshnovsky, O. Molecular gentle emission induced by inelastic electron tunneling. Science 262, 2012–2014 (1993).
Wu, S., Nazin, G. & Ho, W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77, 205430 (2008).
Schuler, B. et al. Electrically pushed photon emission from particular person atomic defects in monolayer WS2. Sci. Adv. 6, eabb5988 (2020).
Lutz, T. et al. Molecular orbital gates for plasmon excitation. Nano Lett. 13, 2846–2850 (2013).
Doppagne, B. et al. Vibronic spectroscopy with submolecular decision from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).
Doppagne, B. et al. Electrofluorochromism on the single-molecule stage. Science 361, 251–255 (2018).
Merino, P. et al. Bimodal exciton–plasmon gentle sources managed by native cost provider injection. Sci. Adv. 4, eaap8349 (2018).
Merino, P., Große, C., Rosławska, A., Kuhnke, Okay. & Kern, Okay. Exciton dynamics of C60-based single-photon emitters explored by Hanbury Brown–Twiss scanning tunnelling microscopy. Nat. Commun. 6, 8461 (2015).
Kuhnke, Okay., Große, C., Merino, P. & Kern, Okay. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117, 5174–5222 (2017).
Gutzler, R., Garg, M., Ast, C. R., Kuhnke, Okay. & Kern, Okay. Mild–matter interplay at atomic scales. Nat. Rev. Phys. 3, 441–453 (2021).
Dong, Z. C. et al. Technology of molecular sizzling electroluminescence by resonant nanocavity plasmons. Nat. Photon. 4, 50–54 (2010).
Chen, G. et al. Spin-triplet-mediated up-conversion and crossover habits in single-molecule electroluminescence. Phys. Rev. Lett. 122, 177401 (2019).
Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).
Peters, P.-J. et al. Quantum coherent multielectron processes in an atomic scale contact. Phys. Rev. Lett. 119, 066803 (2017).
Schneider, N. L., Schull, G. & Berndt, R. Optical probe of quantum shot-noise discount at a single-atom contact. Phys. Rev. Lett. 105, 026601 (2010).
Kalathingal, V., Dawson, P. & Mitra, J. Scanning tunnelling microscope gentle emission: finite temperature present noise and over cut-off emission. Sci. Rep. 7, 1–10 (2017).
Buret, M. et al. Spontaneous hot-electron gentle emission from electron-fed optical antennas. Nano Lett. 15, 5811–5818 (2015).
Parzefall, M. et al. Mild from van der Waals quantum tunneling gadgets. Nat. Commun. 10, 292 (2019).
Solar, J. et al. Mild-emitting plexciton: exploiting plasmon–exciton interplay within the intermediate coupling regime. ACS Nano 12, 10393–10402 (2018).
Péchou, R. et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photon. 7, 3061–3070 (2020).
Qi, P. et al. Large excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity. Mild. Sci. Appl. 11, 176 (2022).
Froehlicher, G., Lorchat, E. & Berciaud, S. Cost versus vitality switch in atomically skinny graphene-transition steel dichalcogenide van der Waals heterostructures. Phys. Rev. 8, 011007 (2018).
Jeong, T. Y. et al. Spectroscopic research of atomic defects and bandgap renormalization in semiconducting monolayer transition steel dichalcogenides. Nat. Commun. 10, 3825 (2019).
Wang, Z., Kalathingal, V., Hoang, T. X., Chu, H.-S. & Nijhuis, C. A. Optical anisotropy in van der Waals supplies: affect on direct excitation of plasmons and photons by quantum tunneling. Mild. Sci. Appl. 10, 230 (2021).
Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations decided by direct emission sample imaging. J. Choose. Soc. Am. B 21, 1210–1215 (2004).
Román, R. J. P. et al. Electroluminescence of monolayer WS2 in a scanning tunneling microscope: impact of bias polarity on spectral and angular distribution of emitted gentle. Phys. Rev. B 106, 085419 (2022).
Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).
Wang, J., Verzhbitskiy, I. & Eda, G. Electroluminescent gadgets primarily based on 2D semiconducting transition steel dichalcogenides. Adv. Mater. 30, 1802687 (2018).
Dobusch, L., Schuler, S., Perebeinos, V. & Mueller, T. Thermal gentle emission from monolayer MoS2. Adv. Mater. 29, 1701304 (2017).
Zhou, Y. et al. Probing darkish excitons in atomically skinny semiconductors by way of near-field coupling to floor plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).
Wang, S. et al. Environment friendly carrier-to-exciton conversion in discipline emission tunnel diodes primarily based on MIS-type van der Waals heterostack. Nano Lett. 17, 5156–5162 (2017).
Tielrooij, Okay. et al. Electrical management of optical emitter rest pathways enabled by graphene. Nat. Phys. 11, 281–287 (2015).
Federspiel, F. et al. Distance dependence of the vitality switch fee from a single semiconductor nanostructure to graphene. Nano Lett. 15, 1252–1258 (2015).
Koppens, F. H., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for sturdy gentle–matter interactions. Nano Lett. 11, 3370–3377 (2011).
Gonçalves, P. A. D. et al. Plasmon–emitter interactions on the nanoscale. Nat. Commun. 11, 366 (2020).
Yuan, L. et al. Photocarrier technology from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).
Chen, Y., Li, Y., Zhao, Y., Zhou, H. & Zhu, H. Extremely environment friendly sizzling electron harvesting from graphene earlier than electron–gap thermalization. Sci. Adv. 5, eaax9958 (2019).
Swathi, R. & Sebastian, Okay. Lengthy vary resonance vitality switch from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 086101 (2009).
Gaudreau, L. et al. Common distance-scaling of nonradiative vitality switch to graphene. Nano Lett. 13, 2030–2035 (2013).
Dias, E. J. et al. Probing nonlocal results in metals with graphene plasmons. Phys. Rev. B 97, 245405 (2018).
Linardy, E., Trushin, M., Watanabe, Okay., Taniguchi, T. & Eda, G. Electro‐optic upconversion in van der Waals heterostructures by way of nonequilibrium photocarrier tunneling. Adv. Mater. 32, 2001543 (2020).
Brotons-Gisbert, M. et al. Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nat. Commun. 10, 3913 (2019).