Meneses, A. & Liy-Salmeron, G. Serotonin and emotion, studying and reminiscence. Rev. Neurosci. 23, 543–553 (2012).
Barandouzi, Z. A. et al. Associations of neurotransmitters and the intestine microbiome with emotional misery in blended sort of irritable bowel syndrome. Sci. Rep. 12, 1648 (2022).
Li, J. et al. A tissue-like neurotransmitter sensor for the mind and intestine. Nature 606, 94–101 (2022).
O’Donnell, M. P. et al. A neurotransmitter produced by intestine micro organism modulates host sensory behaviour. Nature 583, 415–420 (2020).
Hendrickx, S. et al. A delicate capillary LC-UV methodology for the simultaneous evaluation of olanzapine, chlorpromazine and their FMO-mediated N-oxidation merchandise in mind microdialysates. Talanta 162, 268–277 (2017).
Qiao, J. P. et al. Microdialysis mixed with liquid chromatography–tandem mass spectrometry for the willpower of 6-aminobutylphthalide and its primary metabolite within the brains of awake freely-moving rats. J. Chromatogr. B 805, 93–99 (2004).
Roberts, J. G. & Sombers, L. A. Quick-scan cyclic voltammetry: chemical sensing within the mind and past. Anal. Chem. 90, 490–504 (2018).
Weese, M. E., Krevh, R. A., Li, Y., Alvarez, N. T. & Ross, A. E. Defect websites modulate fouling resistance on carbon-nanotube fiber electrodes. ACS Sens. 4, 1001–1007 (2019).
Dunham, Ok. E. & Venton, B. J. Enhancing serotonin fast-scan cyclic voltammetry detection: new waveforms to cut back electrode fouling. Analyst 145, 7437–7446 (2020).
Njagi, J., Chernov, M. M., Leiter, J. & Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based mostly carbon fiber microbiosensor. Anal. Chem. 82, 989–996 (2010).
Schmidt, A. C., Wang, X., Zhu, Y. & Sombers, L. A. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in stay mind tissue. ACS Nano 7, 7864–7873 (2013).
Lugo-Morales, L. Z. et al. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes utilizing fast-scan cyclic voltammetry. Anal. Chem. 85, 8780–8786 (2013).
Yang, C., Trikantzopoulos, E., Jacobs, C. B. & Venton, B. J. Analysis of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical efficiency and floor properties. Anal. Chim. Acta 965, 1–8 (2017).
Meunier, C. J., McCarty, G. S. & Sombers, L. A. Drift subtraction for fast-scan cyclic voltammetry utilizing double-waveform partial-least-squares regression. Anal. Chem. 91, 7319–7327 (2019).
Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).
Liu, C. et al. A wi-fi, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst. Nanoeng. 6, 64 (2020).
Boyden, E. et al. Millisecond-timescale, genetically focused optical management of neural exercise. Nat. Neurosci. 8, 1263–1268 (2005).
Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, Ok. Optogenetics in neural programs. Neuron 71, 9–34 (2011).
Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
Stern, E. et al. Significance of the Debye screening size on nanowire discipline impact transistor sensors. Nano Lett. 7, 3405–3409 (2007).
Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A. & Schöning, M. J. Prospects and limitations of label-free detection of DNA hybridization with field-effect-based gadgets. Sens. Actuators B 111, 470–480 (2005).
Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye size limitations for small-molecule sensing. Science 362, 319–324 (2018).
Zhao, C. et al. Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).
Vu, C. A. & Chen, W. Y. Predicting future prospects of aptamers in field-effect transistor biosensors. Molecules 25, 680 (2020).
Miyakawa, N. et al. Drift suppression of solution-gated graphene field-effect transistors by cation doping for sensing platforms. Sensors 21, 7455 (2021).
Vernick, S. et al. Electrostatic melting in a single-molecule field-effect transistor with functions in genomic identification. Nat. Commun. 8, 15450 (2017).
Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011).
Chatterjee, T. et al. Direct kinetic fingerprinting and digital counting of single protein molecules. Proc. Natl Acad. Sci. USA 117, 22815–22822 (2020).
Roy, R., Hohng, S. & Ha, T. A sensible information to single-molecule FRET. Nat. Strategies 5, 507–516 (2008).
Durham, R. J., Latham, D. R., Sanabria, H. & Jayaraman, V. Structural dynamics of glutamate signaling programs by smFRET. Biophys. J. 119, 1929–1936 (2020).
Fuller, C. W. et al. Molecular electronics sensors on a scalable semiconductor chip: a platform for single-molecule measurement of binding kinetics and enzyme exercise. Proc. Natl Acad. Sci. USA 119, e2112812119 (2022).
Lee, Y. et al. Electrically controllable single-point covalent functionalization of spin-cast carbon-nanotube field-effect transistor arrays. ACS Nano 12, 9922–9930 (2018).
Wilson, H. et al. Electrical monitoring of sp3 defect formation in particular person carbon nanotubes. J. Phys. Chem. C. 120, 1971–1976 (2016).
Sharf, T. et al. Single electron cost sensitivity of liquid-gated carbon nanotube transistors. Nano Lett. 14, 4925–4930 (2014).
Shkodra, B. et al. Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: ideas and functions. Appl. Phys. Rev. 8, 041325 (2021).
Kwon, J., Lee, Y., Lee, T. & Ahn, J. H. Aptamer-based field-effect transistor for detection of avian influenza virus in hen serum. Anal. Chem. 92, 5524–5531 (2020).
Singh, N. Ok., Thungon, P. D., Estrela, P. & Goswami, P. Growth of an aptamer-based discipline impact transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosens. Bioelectron. 123, 30–35 (2019).
Cheung, Ok. M. et al. Phenylalanine monitoring through aptamer-field-effect transistor sensors. ACS Sens. 4, 3308–3317 (2019).
Ortiz-Medina, J. et al. Differential response of doped/faulty graphene and dopamine to electrical fields: a density useful principle research. J. Phys. Chem. C 119, 13972–13978 (2015).
Nakatsuka, N. et al. Aptamer conformational change permits serotonin biosensing with nanopipettes. Anal. Chem. 93, 4033–4041 (2021).
Schmid, S., Götz, M. & Hugel, T. Single-molecule evaluation past dwell occasions: demonstration and evaluation out and in of equilibrium. Biophys. J. 111, 1375–1384 (2016).
Steffen, F. D. et al. Steel ions and sugar puckering steadiness single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Nat. Commun. 11, 104 (2020).
Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. Methods to measure and consider binding affinities. eLife 9, e57264 (2020).
Track, G. et al. Mild-up aptameric sensor of serotonin for point-of-care use. Anal. Chem. 95, 9076–9082 (2023).
de la Faverie, A. R., Guedin, A., Bedrat, A., Yatsunyk, L. A. & Mergny, J. L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 42, e65 (2014).
Meng, S., Maragakis, P., Papaloukas, C. & Kaxiras, E. DNA nucleoside interplay and identification with carbon nanotubes. Nano Lett. 7, 45–50 (2007).
Zhao, X. & Johnson, J. Ok. Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc. 129, 10438–10445 (2007).
Yu, H., Alkhamis, O., Canoura, J., Liu, Y. & Xiao, Y. Advances and challenges in small‐molecule DNA aptamer isolation, characterization, and sensor improvement. Angew. Chem. Int. Ed. 60, 16800–16823 (2021).
Warren, S. B., Vernick, S., Romano, E. & Shepard, Ok. L. Complementary metal-oxide-semiconductor built-in carbon nanotube arrays: towards wide-bandwidth single-molecule sensing programs. Nano Lett. 16, 2674–2679 (2016).
Bouilly, D. et al. Single-molecule response chemistry in patterned nanowells. Nano Lett. 16, 4679–4685 (2016).
Eilers, P. H. An ideal smoother. Anal. Chem. 75, 3631–3636 (2003).
Sigworth, F. & Sine, S. Information transformations for improved show and becoming of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).