Sahin, U. & Tureci, O. Customized vaccines for most cancers immunotherapy. Science 359, 1355–1360 (2018).
Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA through species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).
Bode, C., Zhao, G., Steinhagen, F., Kinjo, T. & Klinman, D. M. CpG DNA as a vaccine adjuvant. Professional Rev. Vaccines 10, 499–511 (2011).
Klinman, D. M., Sato, T. & Shimosato, T. Use of nanoparticles to ship immunomodulatory oligonucleotides. WIREs Nanomed. Nanobiotechnol. 8, 631–637 (2016).
Schuller, V. J. et al. Mobile immunostimulation by CpG-sequence-coated DNA origami buildings. ACS Nano 5, 9696–9702 (2011).
Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in growth and most cancers. Nat. Rev. Most cancers 12, 387–400 (2012).
Shaw, A. et al. Spatial management of membrane receptor operate utilizing ligand nanocalipers. Nat. Strategies 11, 841–846 (2014).
Kwon, P. S. et al. Designer DNA structure gives exact and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).
Pulendran, B. & Ahmed, R. Translating innate immunity into immunological reminiscence: implications for vaccine growth. Cell 124, 849–863 (2006).
Ohto, U. et al. Structural foundation of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702–705 (2015).
Leleux, J. A., Pradhan, P. & Roy, Ok. Biophysical attributes of CpG presentation management TLR9 signaling to differentially polarize systemic immune responses. Cell Rep. 18, 700–710 (2017).
Schmidt, N. W. et al. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation. Nat. Mater. 14, 696–700 (2015).
Lee, E. Y. et al. A overview of immune amplification through ligand clustering by self-assembled liquid-crystalline DNA complexes. Adv. Colloid Interface Sci. 232, 17–24 (2016).
Comberlato, A., Koga, M. M., Nussing, S., Parish, I. A. & Bastings, M. M. C. Spatially managed activation of Toll-like receptor 9 with DNA-based nanomaterials. Nano Lett. 22, 2506–2513 (2022).
Du, R. R. et al. Innate immune stimulation utilizing 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).
Johansson, M., Denardo, D. G. & Coussens, L. M. Polarized immune responses differentially regulate most cancers growth. Immunol. Rev. 222, 145–154 (2008).
Yew, N. S. et al. CpG-depleted plasmid DNA vectors with enhanced security and long-term gene expression in vivo. Mol. Ther. 5, 731–738 (2002).
Kumar, V. et al. DNA nanotechnology for most cancers remedy. Theranostics 6, 710–725 (2016).
Udomprasert, A. & Kangsamaksin, T. DNA origami purposes in most cancers remedy. Most cancers Sci. 108, 1535–1543 (2017).
Li, S. et al. A DNA nanorobot features as a most cancers therapeutic in response to a molecular set off in vivo. Nat. Biotechnol. 36, 258–264 (2018).
Liu, S. et al. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat. Mater. 20, 421–430 (2021).
Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors utilizing DNA origami promotes phagocytosis. eLife 10, e68311 (2021).
Berger, R. M. L. et al. Nanoscale FasL group on DNA origami to decipher apoptosis sign activation in cells. Small 17, e2101678 (2021).
Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).
Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity buildings from DNA. Nat. Nanotechnol. 5, 520–524 (2010).
Shih, W. M. Exploiting weak interactions in DNA self-assembly. Science 347, 1417–1418 (2015).
Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).
Shen, H. et al. Enhanced and extended cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006).
Min, Y. et al. Antigen-capturing nanoparticles enhance the abscopal impact and most cancers immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).
Chesson, C. B. & Zloza, A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy remedies of most cancers. Nanomedicine 12, 2693–2706 (2017).
Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).
Anastassacos, F. M., Zhao, Z., Zeng, Y. & Shih, W. M. Glutaraldehyde cross-linking of oligolysines coating DNA origami enormously reduces susceptibility to nuclease degradation. J. Am. Chem. Soc. 142, 3311–3315 (2020).
Lucas, C. R. et al. DNA origami nanostructures elicit dose-dependent immunogenicity and are unhazardous as much as excessive doses in vivo. Small 18, e2108063 (2022).
Wamhoff, E. C. et al. Analysis of nonmodified wireframe DNA origami for acute toxicity and biodistribution in mice. ACS Appl. Bio. Mater. 6, 1960–1969 (2023).
Douglas, S. M. et al. Speedy prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
Njongmeta, L. M. et al. CD205 antigen concentrating on mixed with dendritic cell recruitment components and antigen-linked CD40L activation primes and expands vital antigen-specific antibody and CD4(+) T cell responses following DNA vaccination of outbred animals. Vaccine 30, 1624–1635 (2012).
Lahoud, M. H. et al. DEC-205 is a cell floor receptor for CpG oligonucleotides. Proc. Natl Acad. Sci. USA 109, 16270–16275 (2012).
You, C. X. et al. AAV2/IL-12 gene supply into dendritic cells (DC) enhances CTL stimulation above different IL-12 purposes: proof for IL-12 intracrine exercise in DC. Oncoimmunology 1, 847–855 (2012).
Heo, M. B., Kim, S. Y., Yun, W. S. & Lim, Y. T. Sequential supply of an anticancer drug and mixed immunomodulatory nanoparticles for environment friendly chemoimmunotherapy. Int J. Nanomed. 10, 5981–5992 (2015).
Scheuerpflug, A. et al. The position of dendritic cells for remedy of B-cell lymphoma with immune checkpoint inhibitors. Most cancers Immunol. Immunother. 70, 1343–1350 (2020).
Keestra, A. M., de Zoete, M. R., Bouwman, L. I. & van Putten, J. P. Rooster TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J. Immunol. 185, 460–467 (2010).
Oldenburg, M. et al. TLR13 acknowledges bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337, 1111–1115 (2012).
Spies, B. et al. Vaccination with plasmid DNA prompts dendritic cells through Toll-like receptor 9 (TLR9) however features in TLR9-deficient mice. J. Immunol. 171, 5908–5912 (2003).
Yu, D. et al. ‘Immunomers’–novel 3′-3′-linked CpG oligodeoxyribonucleotides as potent immunomodulatory brokers. Nucleic Acids Res. 30, 4460–4469 (2002).
Minari, J., Mochizuki, S. & Sakurai, Ok. Enhanced cytokine secretion owing to a number of CpG aspect chains of DNA duplex. Oligonucleotides 18, 337–344 (2008).
Smith, L. Ok. et al. Interleukin-10 instantly inhibits CD8(+) T cell operate by enhancing N-glycan branching to lower antigen sensitivity. Immunity 48, 299–312 e295 (2018).
Li, A. W. et al. A facile strategy to reinforce antigen response for personalised most cancers vaccination. Nat. Mater. 17, 528–534 (2018).
Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to most cancers. Nature 520, 692–696 (2015).
Toubi, E. & Shoenfeld, Y. Protecting autoimmunity in most cancers (overview). Oncol. Rep. 17, 245–251 (2007).
Ke, Y., Voigt, N. V., Gothelf, Ok. V. & Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774 (2012).
Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR construction willpower. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).
Hahn, J., Wickham, S. F., Shih, W. M. & Perrault, S. D. Addressing the instability of DNA nanostructures in tissue tradition. ACS Nano 8, 8765–8775 (2014).