[HTML payload içeriği buraya]
30.9 C
Jakarta
Monday, November 25, 2024

Single-step fabrication of liquid gallium nanoparticles through capillary interplay for dynamic structural colors


  • Tittl, A. Tunable structural colours on show. Gentle Sci. Appl. 11, 155 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sreekanth, Okay. V. et al. Dynamic shade technology with electrically tunable skinny movie optical coatings. Nano Lett. 21, 10070–10075 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • White, T. E. Structural colors mirror particular person high quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, I. B., Lončar, M. & Aizenberg, J. Structural color in colourimetric sensors and indicators. J. Mater. Chem. C 1, 6075–6086 (2013).

    CAS 

    Google Scholar
     

  • Kim, J., bin, Lee, S. Y., Lee, J. M. & Kim, S. H. Designing structural-color patterns composed of colloidal arrays. ACS Appl Mater. Interfaces 11, 14485–14509 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X., Zhang, X., Chen, X. & Luo, M. Resolution path to massive space all-TiO2 one-dimensional photonic crystals with excessive reflectivity and completely different structural colours. Nanotechnology 31, 135209 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Daqiqeh Rezaei, S. et al. Tunable, cost-effective, and scalable structural colours for sensing and shopper merchandise. Adv. Choose. Mater. 7, 1900735 (2019).

    CAS 

    Google Scholar
     

  • Liu, H. et al. Excessive-order photonic cavity modes enabled 3D structural colours. ACS Nano https://doi.org/10.1021/acsnano.2c01999 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegwardt, L. & Gallei, M. Complicated 3D-printed mechanochromic supplies with iridescent structural colours primarily based on core–shell particles. Adv. Funct. Mater. 33, 2213099 (2023).

    CAS 

    Google Scholar
     

  • Demirörs, A. F. et al. Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural shade. Nat. Commun. 13, 4397 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, C., Koh, Okay. & Jeong, U. Structural shade portray by rubbing particle powder. Sci. Rep. 5, 8340 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, Y. et al. All-dielectric excessive saturation structural colours with Si3N4 metasurface. Mod. Phys. Lett. B 34, 28954–28965 (2020).


    Google Scholar
     

  • Yang, J. H. et al. Structural colours enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Do, Y. S. et al. Plasmonic shade filter and its fabrication for large-area purposes. Adv. Choose. Mater. 1, 133–138 (2013).

    ADS 

    Google Scholar
     

  • Hu, Y., Yang, D., Ma, D. & Huang, S. Extraordinarily delicate mechanochromic photonic crystals with broad tuning vary of photonic bandgap and quick responsive velocity for high-resolution multicolor show purposes. Chem. Eng. J. 429, 132342 (2022).

    CAS 

    Google Scholar
     

  • Kaplan, A. F., Xu, T. & Jay Guo, L. Excessive effectivity resonance-based spectrum filters with tunable transmission bandwidth fabricated utilizing nanoimprint lithography. Appl Phys. Lett. 99, 143111 (2011).

    ADS 

    Google Scholar
     

  • Geng, J., Xu, L., Yan, W., Shi, L. & Qiu, M. Excessive-speed laser writing of structural colours for full-color inkless printing. Nat. Commun. 14, 565 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, B. H., Liu, H. & Kolle, M. Scalable optical manufacture of dynamic structural color in stretchable supplies. Nat. Mater. 21, 1014–1018 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Das Gupta, T. et al. Self-assembly of nanostructured glass metasurfaces through templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Angle-dependent structural colours in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint expertise. Beilstein J. Nanotechnol. 10, 1211–1216 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z., Dai, Q., Deng, L., Zheng, G. & Li, G. Structural-color nanoprinting with hidden watermarks. Choose. Lett. 46, 480–483 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, M. et al. Bio-inspired structural colours produced through self-assembly of artificial melanin nanoparticles. ACS Nano 9, 5454–5460 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, X. et al. Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite movies with balanced ordered/disordered arrays. Compos. B 229, 109456 (2022).

    CAS 

    Google Scholar
     

  • Fashion, R. W., Tutika, R., Kim, J. Y. & Bartlett, M. D. Stable–liquid composites for mushy multifunctional supplies. Adv. Funct. Mater. 31, 2005804 (2021).

    CAS 

    Google Scholar
     

  • Miranda, I. et al. Properties and purposes of PDMS for biomedical engineering: a overview. J. Funct. Biomater. https://doi.org/10.3390/jfb13010002 (2022).

  • Zhu, X., Shi, L., Liu, X., Zi, J. & Wang, Z. A mechanically tunable plasmonic construction composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 3, 807–812 (2010).

    CAS 

    Google Scholar
     

  • Millyard, M. G. et al. Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Appl. Phys. Lett. 100, 073101 (2012).

    ADS 

    Google Scholar
     

  • Cataldi, U. et al. Rising gold nanoparticles on a versatile substrate to allow easy mechanical management of their plasmonic coupling. J. Mater. Chem. C 2, 7927–7933 (2014).

    CAS 

    Google Scholar
     

  • Horák, M., Čalkovský, V., Mach, J., Křápek, V. & Šikola, T. Plasmonic properties of particular person gallium nanoparticles. J. Phys. Chem. Lett. 14, 2012–2019 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catalán-Gómez, S., Redondo-Cubero, A., Palomares, F. J., Nucciarelli, F. & Pau, J. L. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperatures. Nanotechnology 28, 405705 (2017).

    PubMed 

    Google Scholar
     

  • Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Extremely stretchable multilayer digital circuits utilizing biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajalilou, A. et al. Biphasic liquid steel composites for sinter-free printed stretchable electronics. Adv. Mater. Interfaces 9, 2101913 (2022).

    CAS 

    Google Scholar
     

  • Khondoker, M. A. H. & Sameoto, D. Fabrication strategies and purposes of microstructured gallium primarily based liquid steel alloys. Good Mater. Struct. https://doi.org/10.1088/0964-1726/25/9/093001 (2016).

  • Dickey, M. D. Stretchable and mushy electronics utilizing liquid metals. Adv. Mater. https://doi.org/10.1002/adma.201606425 (2017).

  • Palleau, E., Reece, S., Desai, S. C., Smith, M. E. & Dickey, M. D. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589–1592 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Hardy, S. C. The floor stress of liquid gallium. J. Cryst. Development 71, 329–333 (1985).


    Google Scholar
     

  • Limantoro, C. et al. Synthesis of antimicrobial gallium nanoparticles utilizing the new injection technique. ACS Mater. Au https://doi.org/10.1021/acsmaterialsau.2c00078 (2022).

    Article 

    Google Scholar
     

  • Gao, X., Fan, X. & Zhang, J. Tunable plasmonic gallium nano liquid steel from facile and controllable synthesis. Mater. Horiz. 8, 3315–3323 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Reineck, P. et al. UV plasmonic properties of colloidal liquid-metal eutectic gallium–indium alloy nanoparticles. Sci. Rep. 9, 1–7 (2019).

    CAS 

    Google Scholar
     

  • Wong, W. S. Y. et al. Adaptive wetting of polydimethylsiloxane. Langmuir 36, 7236–7245 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, S.-S. D. et al. PDMS leaching and its implications for on-chip research specializing in bone regeneration purposes. Organs-on-a-Chip 2, 100004 (2020).


    Google Scholar
     

  • McGRAW, D. A. A way for figuring out Younger’s modulus of glass at elevated temperatures. J. Am. Ceram. Soc. 35, 22–27 (1952).

    CAS 

    Google Scholar
     

  • Zhao, B., Bonaccurso, E., Auernhammer, G. Okay. & Chen, L. Elasticity-to-capillarity transition in mushy substrate deformation. Nano Lett. 21, 10361–10367 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fashion, R. W. & Dufresne, E. R. Static wetting on deformable substrates, from liquids to mushy solids. Delicate Matter 8, 7177–7184 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Fashion, R. W. et al. Common deformation of soppy substrates close to a contact line and the direct measurement of strong floor stresses. Phys. Rev. Lett. 110, 066103 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Samy, R. A., Suthanthiraraj, P. P. A., George, D., Iqbal, R. & Sen, A. Okay. Elastocapillarity-based transport of liquids in versatile confinements and over mushy substrates. Microfluid. Nanofluidics https://doi.org/10.1007/s10404-019-2266-2 (2019).

  • Si, Z. et al. The ultrafast and steady fabrication of a polydimethylsiloxane membrane by ultraviolet-induced polymerization. Angew. Chem. Int. Ed. 58, 17175–17179 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Jean, P., Douaud, A., LaRochelle, S., Messaddeq, Y. & Shi, W. Templated dewetting for self-assembled ultra-low-loss chalcogenide built-in photonics. Choose. Mater. Categorical 11, 3317–3735 (2021).


    Google Scholar
     

  • Tune, M. et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat. Nanotechnol. 18, 71–78 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles