[HTML payload içeriği buraya]
25.5 C
Jakarta
Sunday, November 24, 2024

Chimeric nanobody-decorated liposomes by self-assembly


  • Sercombe, L. et al. Advances and challenges of liposome assisted drug supply. Entrance. Pharmacol. 6, 286 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Castro Bravo, Okay. M. & Liu, J. Focused liposomal drug supply: a nanoscience and biophysical perspective. Nanoscale Horiz. 6, 78–94 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug supply. Chem. Rev. 115, 10938–10966 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamot, C. et al. Epidermal development issue receptor-targeted immunoliposomes considerably improve the efficacy of a number of anticancer medicine in vivo. Most cancers Res. 65, 11631–11638 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alavi, M. & Hamidi, M. Passive and energetic concentrating on in most cancers remedy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34, 20180032 (2019).

  • Leserman, L. D., Machy, P. & Barbet, J. Cell-specific drug switch from liposomes bearing monoclonal antibodies. Nature 293, 226–228 (1981).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nellis, D. F. et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale manufacturing and purification. Biotechnol. Prog. 21, 205–220 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. R., Sefah, Okay., Liu, H. P., Wang, R. W. & Tan, W. H. DNA aptamer-micelle as an environment friendly detection/supply automobile towards most cancers cells. Proc. Natl Acad. Sci. USA 107, 5–10 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Liu, Y. N. et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic remedy. Mol. Pharm. 17, 1276–1292 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hama, S., Sakai, M., Itakura, S., Majima, E. & Kogure, Okay. Fast modification of antibodies on the floor of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug supply. Biochem Biophys. Rep. 27, 101067 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, E. J., Lee, J. W. & Ellington, A. D. Functions of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ma et al. Nucleic acid aptamers in most cancers analysis, prognosis and remedy. Chem. Soc. Rev. 44, 1240–1256 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and views. Angew. Chem. Int. Ed. Engl. 60, 2221–2231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muyldermans, S. Nanobodies: pure single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and performance. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finger, C., Escher, C. & Schneider, D. The only transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Sign 2, ra56 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lāce, I., Cotroneo, E. R., Hesselbarth, N. & Simeth, N. A. Synthetic peptides to induce membrane denaturation and disruption and modulate membrane composition and fusion. J. Pept. Sci. 29, e3466 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rahman, M. M., Ueda, M., Hirose, T. & Ito, Y. Spontaneous formation of gating lipid area in uniform-size peptide vesicles for managed launch. J. Am. Chem. Soc. 140, 17956–17961 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z., Moon, J. J. & Cheng, W. Quantitation and stability of protein conjugation on liposomes for managed density of floor epitopes. Bioconjug. Chem. 29, 1251–1260 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, S. et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J. Management. Launch 145, 165–175 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Meel, R. et al. Tumor-targeted nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for most cancers therapy. J. Management. Launch 159, 281–289 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone improve lung-targeting specificity and therapeutic impact for acute lung damage. Drug Deliv. 24, 1770–1781 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D. & Hosseini, H. R. M. Anti-HER2 VHH focused magnetoliposome for clever magnetic resonance imaging of breast most cancers cells. Cell. Mol. Bioeng. 10, 263–272 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woll, S. et al. Sortagging of liposomes with a murine CD11b-specific VHH will increase in vitro and in vivo concentrating on specificity of myeloid cells. Eur. J. Pharm. Biopharm. 134, 190–198 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mesquita, B. S. et al. The impression of nanobody density on the concentrating on effectivity of PEGylated liposomes. Int. J. Mol. Sci. 23, 14974 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, T., Hirose, S., Sasaki, Y. & Akiyoshi, Okay. Substrate-sorting nanoreactors based mostly on permeable peptide polymer vesicles and hybrid liposomes with artificial macromolecular channels. J. Am. Chem. Soc. 142, 154–161 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates ldl cholesterol content material from modifications in fluidity in dwelling cell membranes. Biophys. J. 104, 1238–1247 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Marsh, D. Thermodynamics of phospholipid self-assembly. Biophys. J. 102, 1079–1087 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wan, Y. et al. Velocity impact on aptamer-based circulating tumor cell isolation in microfluidic gadgets. J. Phys. Chem. B 115, 13891–13896 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grillo, I., Morfin, I. & Prevost, S. Structural characterization of pluronic micelles swollen with fragrance molecules. Langmuir 34, 13395–13408 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, T. et al. Chitosan in mucoadhesive drug supply: deal with native vaginal remedy. Mar. Medicine 13, 222–236 (2015).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Takikawa, M., Fujisawa, M., Yoshino, Okay. & Takeoka, S. Intracellular distribution of lipids and encapsulated mannequin medicine from cationic liposomes with completely different uptake pathways. Int J. Nanomed. 15, 8401–8409 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, W. S. & Malmstadt, N. Liposome manufacturing and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur. Biophys. J. 48, 549–558 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haque, M. E., McIntosh, T. J. & Lentz, B. R. Affect of lipid composition on bodily properties and PEG-mediated fusion of curved and uncurved mannequin membrane vesicles: “Nature’s personal” fusogenic lipid bilayer. Biochemistry 40, 4340–4348 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman, M. M., Abosheasha, M. A., Ito, Y. & Ueda, M. DNA-induced fusion between lipid domains of peptide–lipid hybrid vesicles. Chem. Commun. 58, 11799–11802 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dominguez, L., Foster, L., Straub, J. E. & Thirumalai, D. Influence of membrane lipid composition on the construction and stability of the transmembrane area of amyloid precursor protein. Proc. Natl Acad. Sci. USA 113, E5281–E5287 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, B. H. et al. Sequential intercellular supply nanosystem for enhancing ROS-Induced antitumor remedy. Nano Lett. 19, 3505–3518 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tarafdar, P. Okay., Chakraborty, H., Dennison, S. M. & Lentz, B. R. Phosphatidylserine inhibits and calcium promotes mannequin membrane fusion. Biophys. J. 103, 1880–1889 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lygina, A. S., Meyenberg, Okay., Jahn, R. & Diederichsen, U. Transmembrane area peptide/peptide nucleic acid hybrid as a mannequin of a SNARE protein in vesicle fusion. Angew. Chem. Int Ed. 50, 8597–8601 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Risselada, H. J., Kutzner, C. & Grubmuller, H. Caught within the act: visualization of SNARE-mediated fusion occasions in molecular element. ChemBioChem 12, 1049–2011 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser, H. J. et al. Lateral sorting in mannequin membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kozlowska, D. et al. Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI distinction agent for human a number of myeloma and non Hodgkin’s lymphoma (human Burkitt’s lymphoma). RSC Adv. 4, 18007–18016 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ingolfsson, H. I. et al. Lipid group of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric stress between membrane-bound proteins opposes lipid section separation. J. Am. Chem. Soc. 135, 1185–1188 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schafer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in mannequin membranes. Proc. Natl Acad. Sci. USA 108, 1343–1348 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lomize, A. L., Lomize, M. A., Krolicki, S. R. & Pogozheva, I. D. Membranome: a database for proteome-wide evaluation of single-pass membrane proteins. Nucleic Acids Res. 45, D250–D255 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardon, E. et al. A normal protocol for the technology of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jovcevska, I. et al. TRIM28 and β-actin recognized through nanobody-based reverse proteomics strategy as doable human glioblastoma biomarkers. PLoS ONE 9, e113688 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hmila, I. et al. A bispecific nanobody to offer full safety in opposition to deadly scorpion envenoming. FASEB J. 24, 3479–3489 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farajpour, Z., Rahbarizadeh, F., Kazemi, B. & Ahmadvand, D. A nanobody directed to a purposeful epitope on VEGF, as a novel technique for most cancers therapy. Biochem. Biophys. Res. Commun. 446, 132–136 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roovers, R. C. et al. A biparatopic anti-EGFR nanobody effectively inhibits stable tumour development. Int. J. Most cancers 129, 2013–2024 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations via multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, H., Maier, J., Huang, H., Perrone, V. & Simmerling, C. Folding simulations for proteins with numerous topologies are accessible in days with a physics-based power area and implicit solvent. J. Am. Chem. Soc. 136, 13959–13962 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: assembly fashionable challenges in visualization and evaluation. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeLano W. L. PyMOL molecular viewer: updates and refinements. Abstr. Pap. Am. Chem. S 238, (2009).

  • Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA strategies to estimate ligand-binding affinities. Knowledgeable Opin. Drug Discov. 10, 449–461 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: a brand new software to carry out end-state free vitality calculations with GROMACS. J. Chem. Concept Comput. 17, 6281–6291 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Et-Thakafy, O. et al. Mechanical properties of membranes composed of gel-phase or fluid-phase phospholipids probed on liposomes by atomic power spectroscopy. Langmuir 33, 5117–5126 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dokukin, M. E. & Sokolov, I. Quantitative mapping of the elastic modulus of soppy supplies with HarmoniX and PeakForce QNM AFM modes. Langmuir 28, 16060–16071 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Custodio, T. F. et al. Choice, biophysical and structural evaluation of artificial nanobodies that successfully neutralize SARS-CoV-2. Nat. Commun. 11, 5588 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Callister, W. D. & Rethwisch, D. G. Supplies Science and Engineering: An Introduction Vol. 7 (Wiley, 2020).

  • McQuarrie, D. A., Jachimowski, C. & Russell, M. Kinetics of small methods. II. J. Chem. Phys. 40, 2914–2921 (1964).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Decuzzi, P. & Ferrari, M. The adhesive energy of non-spherical particles mediated by particular interactions. Biomaterials 27, 5307–5314 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piper, J. W., Swerlick, R. A. & Zhu, C. Figuring out power dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Goldman, A. J., Cox, R. G. & Brenner, H. Sluggish viscous movement of a sphere parallel to a aircraft wall 0.2. Couette move. Chem. Eng. Sci. 22, 637–651 (1967).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles