Sercombe, L. et al. Advances and challenges of liposome assisted drug supply. Entrance. Pharmacol. 6, 286 (2015).
Liu, Y., Castro Bravo, Okay. M. & Liu, J. Focused liposomal drug supply: a nanoscience and biophysical perspective. Nanoscale Horiz. 6, 78–94 (2021).
Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug supply. Chem. Rev. 115, 10938–10966 (2015).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Mamot, C. et al. Epidermal development issue receptor-targeted immunoliposomes considerably improve the efficacy of a number of anticancer medicine in vivo. Most cancers Res. 65, 11631–11638 (2005).
Alavi, M. & Hamidi, M. Passive and energetic concentrating on in most cancers remedy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34, 20180032 (2019).
Leserman, L. D., Machy, P. & Barbet, J. Cell-specific drug switch from liposomes bearing monoclonal antibodies. Nature 293, 226–228 (1981).
Nellis, D. F. et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale manufacturing and purification. Biotechnol. Prog. 21, 205–220 (2005).
Wu, Y. R., Sefah, Okay., Liu, H. P., Wang, R. W. & Tan, W. H. DNA aptamer-micelle as an environment friendly detection/supply automobile towards most cancers cells. Proc. Natl Acad. Sci. USA 107, 5–10 (2010).
Liu, Y. N. et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic remedy. Mol. Pharm. 17, 1276–1292 (2020).
Hama, S., Sakai, M., Itakura, S., Majima, E. & Kogure, Okay. Fast modification of antibodies on the floor of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug supply. Biochem Biophys. Rep. 27, 101067 (2021).
Cho, E. J., Lee, J. W. & Ellington, A. D. Functions of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).
Ma et al. Nucleic acid aptamers in most cancers analysis, prognosis and remedy. Chem. Soc. Rev. 44, 1240–1256 (2015).
Li, L. et al. Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and views. Angew. Chem. Int. Ed. Engl. 60, 2221–2231 (2021).
Muyldermans, S. Nanobodies: pure single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).
Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and performance. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).
Finger, C., Escher, C. & Schneider, D. The only transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Sign 2, ra56 (2009).
Lāce, I., Cotroneo, E. R., Hesselbarth, N. & Simeth, N. A. Synthetic peptides to induce membrane denaturation and disruption and modulate membrane composition and fusion. J. Pept. Sci. 29, e3466 (2023).
Rahman, M. M., Ueda, M., Hirose, T. & Ito, Y. Spontaneous formation of gating lipid area in uniform-size peptide vesicles for managed launch. J. Am. Chem. Soc. 140, 17956–17961 (2018).
Chen, Z., Moon, J. J. & Cheng, W. Quantitation and stability of protein conjugation on liposomes for managed density of floor epitopes. Bioconjug. Chem. 29, 1251–1260 (2018).
Oliveira, S. et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J. Management. Launch 145, 165–175 (2010).
van der Meel, R. et al. Tumor-targeted nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for most cancers therapy. J. Management. Launch 159, 281–289 (2012).
Li, N. et al. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone improve lung-targeting specificity and therapeutic impact for acute lung damage. Drug Deliv. 24, 1770–1781 (2017).
Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D. & Hosseini, H. R. M. Anti-HER2 VHH focused magnetoliposome for clever magnetic resonance imaging of breast most cancers cells. Cell. Mol. Bioeng. 10, 263–272 (2017).
Woll, S. et al. Sortagging of liposomes with a murine CD11b-specific VHH will increase in vitro and in vivo concentrating on specificity of myeloid cells. Eur. J. Pharm. Biopharm. 134, 190–198 (2019).
Mesquita, B. S. et al. The impression of nanobody density on the concentrating on effectivity of PEGylated liposomes. Int. J. Mol. Sci. 23, 14974 (2022).
Nishimura, T., Hirose, S., Sasaki, Y. & Akiyoshi, Okay. Substrate-sorting nanoreactors based mostly on permeable peptide polymer vesicles and hybrid liposomes with artificial macromolecular channels. J. Am. Chem. Soc. 142, 154–161 (2020).
Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates ldl cholesterol content material from modifications in fluidity in dwelling cell membranes. Biophys. J. 104, 1238–1247 (2013).
Marsh, D. Thermodynamics of phospholipid self-assembly. Biophys. J. 102, 1079–1087 (2012).
Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).
Wan, Y. et al. Velocity impact on aptamer-based circulating tumor cell isolation in microfluidic gadgets. J. Phys. Chem. B 115, 13891–13896 (2011).
Grillo, I., Morfin, I. & Prevost, S. Structural characterization of pluronic micelles swollen with fragrance molecules. Langmuir 34, 13395–13408 (2018).
Andersen, T. et al. Chitosan in mucoadhesive drug supply: deal with native vaginal remedy. Mar. Medicine 13, 222–236 (2015).
Takikawa, M., Fujisawa, M., Yoshino, Okay. & Takeoka, S. Intracellular distribution of lipids and encapsulated mannequin medicine from cationic liposomes with completely different uptake pathways. Int J. Nanomed. 15, 8401–8409 (2020).
Lin, W. S. & Malmstadt, N. Liposome manufacturing and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur. Biophys. J. 48, 549–558 (2019).
Haque, M. E., McIntosh, T. J. & Lentz, B. R. Affect of lipid composition on bodily properties and PEG-mediated fusion of curved and uncurved mannequin membrane vesicles: “Nature’s personal” fusogenic lipid bilayer. Biochemistry 40, 4340–4348 (2001).
Rahman, M. M., Abosheasha, M. A., Ito, Y. & Ueda, M. DNA-induced fusion between lipid domains of peptide–lipid hybrid vesicles. Chem. Commun. 58, 11799–11802 (2022).
Dominguez, L., Foster, L., Straub, J. E. & Thirumalai, D. Influence of membrane lipid composition on the construction and stability of the transmembrane area of amyloid precursor protein. Proc. Natl Acad. Sci. USA 113, E5281–E5287 (2016).
Wang, B. H. et al. Sequential intercellular supply nanosystem for enhancing ROS-Induced antitumor remedy. Nano Lett. 19, 3505–3518 (2019).
Tarafdar, P. Okay., Chakraborty, H., Dennison, S. M. & Lentz, B. R. Phosphatidylserine inhibits and calcium promotes mannequin membrane fusion. Biophys. J. 103, 1880–1889 (2012).
Lygina, A. S., Meyenberg, Okay., Jahn, R. & Diederichsen, U. Transmembrane area peptide/peptide nucleic acid hybrid as a mannequin of a SNARE protein in vesicle fusion. Angew. Chem. Int Ed. 50, 8597–8601 (2011).
Risselada, H. J., Kutzner, C. & Grubmuller, H. Caught within the act: visualization of SNARE-mediated fusion occasions in molecular element. ChemBioChem 12, 1049–2011 (2011).
Kaiser, H. J. et al. Lateral sorting in mannequin membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).
Kozlowska, D. et al. Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI distinction agent for human a number of myeloma and non Hodgkin’s lymphoma (human Burkitt’s lymphoma). RSC Adv. 4, 18007–18016 (2014).
Ingolfsson, H. I. et al. Lipid group of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).
Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric stress between membrane-bound proteins opposes lipid section separation. J. Am. Chem. Soc. 135, 1185–1188 (2013).
Schafer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in mannequin membranes. Proc. Natl Acad. Sci. USA 108, 1343–1348 (2011).
Lomize, A. L., Lomize, M. A., Krolicki, S. R. & Pogozheva, I. D. Membranome: a database for proteome-wide evaluation of single-pass membrane proteins. Nucleic Acids Res. 45, D250–D255 (2017).
Pardon, E. et al. A normal protocol for the technology of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).
Jovcevska, I. et al. TRIM28 and β-actin recognized through nanobody-based reverse proteomics strategy as doable human glioblastoma biomarkers. PLoS ONE 9, e113688 (2014).
Hmila, I. et al. A bispecific nanobody to offer full safety in opposition to deadly scorpion envenoming. FASEB J. 24, 3479–3489 (2010).
Farajpour, Z., Rahbarizadeh, F., Kazemi, B. & Ahmadvand, D. A nanobody directed to a purposeful epitope on VEGF, as a novel technique for most cancers therapy. Biochem. Biophys. Res. Commun. 446, 132–136 (2014).
Roovers, R. C. et al. A biparatopic anti-EGFR nanobody effectively inhibits stable tumour development. Int. J. Most cancers 129, 2013–2024 (2011).
Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations via multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).
Nguyen, H., Maier, J., Huang, H., Perrone, V. & Simmerling, C. Folding simulations for proteins with numerous topologies are accessible in days with a physics-based power area and implicit solvent. J. Am. Chem. Soc. 136, 13959–13962 (2014).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Goddard, T. D. et al. UCSF ChimeraX: assembly fashionable challenges in visualization and evaluation. Protein Sci. 27, 14–25 (2018).
DeLano W. L. PyMOL molecular viewer: updates and refinements. Abstr. Pap. Am. Chem. S 238, (2009).
Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA strategies to estimate ligand-binding affinities. Knowledgeable Opin. Drug Discov. 10, 449–461 (2015).
Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: a brand new software to carry out end-state free vitality calculations with GROMACS. J. Chem. Concept Comput. 17, 6281–6291 (2021).
Et-Thakafy, O. et al. Mechanical properties of membranes composed of gel-phase or fluid-phase phospholipids probed on liposomes by atomic power spectroscopy. Langmuir 33, 5117–5126 (2017).
Dokukin, M. E. & Sokolov, I. Quantitative mapping of the elastic modulus of soppy supplies with HarmoniX and PeakForce QNM AFM modes. Langmuir 28, 16060–16071 (2012).
Custodio, T. F. et al. Choice, biophysical and structural evaluation of artificial nanobodies that successfully neutralize SARS-CoV-2. Nat. Commun. 11, 5588 (2020).
Callister, W. D. & Rethwisch, D. G. Supplies Science and Engineering: An Introduction Vol. 7 (Wiley, 2020).
McQuarrie, D. A., Jachimowski, C. & Russell, M. Kinetics of small methods. II. J. Chem. Phys. 40, 2914–2921 (1964).
Decuzzi, P. & Ferrari, M. The adhesive energy of non-spherical particles mediated by particular interactions. Biomaterials 27, 5307–5314 (2006).
Piper, J. W., Swerlick, R. A. & Zhu, C. Figuring out power dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998).
Goldman, A. J., Cox, R. G. & Brenner, H. Sluggish viscous movement of a sphere parallel to a aircraft wall 0.2. Couette move. Chem. Eng. Sci. 22, 637–651 (1967).