Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral hemorrhage: pathophysiology, therapy, and future instructions. Circ Res. 2022;130:1204–29. https://doi.org/10.1161/CIRCRESAHA.121.319949.
Preserve RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of damage and therapeutic targets. Lancet Neurol. 2012;11:720–31. https://doi.org/10.1016/S1474-4422(12)70104-7.
Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of damage and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord. 2021;14:17562864211049208. https://doi.org/10.1177/17562864211049208.
Sondag L, Schreuder F, Boogaarts HD, Rovers MM, Vandertop WP, Dammers R, Klijn CJM. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol. 2020;88:239–50. https://doi.org/10.1002/ana.25732.
Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane Ok, McBee N, Mayo SW, Bistran-Corridor AJ, Gandhi D, Mould WA, et al. Efficacy and security of minimally invasive surgical procedure with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, managed, open-label, blinded endpoint part 3 trial. Lancet. 2019;393:1021–32. https://doi.org/10.1016/S0140-6736(19)30195-3.
Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers. 2023;9:15. https://doi.org/10.1038/s41572-023-00424-7.
Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: present approaches to acute administration. Lancet. 2018;392:1257–68. https://doi.org/10.1016/S0140-6736(18)31878-6.
Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN. Focusing on secondary damage in intracerebral haemorrhage-perihaematomal oedema. Nat Rev Neurol. 2015;11:111–22. https://doi.org/10.1038/nrneurol.2014.264.
Li Q, Wan J, Lan X, Han X, Wang Z, Wang J. Neuroprotection of brain-permeable iron chelator VK-28 towards intracerebral hemorrhage in mice. J Cereb Blood Circulate Metab. 2017;37:3110–23. https://doi.org/10.1177/0271678X17709186.
Kearns KN, Ironside N, Park MS, Worrall BB, Southerland AM, Chen CJ, Ding D. Neuroprotective therapies for spontaneous intracerebral hemorrhage. Neurocrit Care. 2021;35:862–86. https://doi.org/10.1007/s12028-021-01311-3.
Alsbrook DL, Di Napoli M, Bhatia Ok, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23:407–31. https://doi.org/10.1007/s11910-023-01282-2.
Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation by way of PGE2/EP2/NOX2 signalling and improves the result of intracerebral haemorrhage in mice. Mind Behav Immun. 2021;91:615–26. https://doi.org/10.1016/j.bbi.2020.09.032.
Zhao X, Ting SM, Liu CH, Solar G, Kruzel M, Roy-eilly M, Aronowski J. Neutrophil polarization by IL-27 as a therapeutic goal for intracerebral hemorrhage. Nat Commun. 2017;8:602. https://doi.org/10.1038/s41467-017-00770-7.
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86. https://doi.org/10.1007/s12035-016-9785-6.
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: essential pathological mechanisms in traumatic braininjury-induced neurodegeneration. Entrance Growing old Neurosci. 2022;14: 825086. https://doi.org/10.3389/fnagi.2022.825086.
Chen HS, Chen X, Li WT, Shen JG. Focusing on RNS/caveolin-1/MMP signaling cascades to guard towards cerebral ischemia-reperfusion accidents: potential utility for drug discovery. Acta Pharmacol Sin. 2018;39:669–82. https://doi.org/10.1038/aps.2018.27.
Granger DN, Kvietys PR. Reperfusion damage and reactive oxygen species: the evolution of an idea. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.
Forman HJ, Zhang H. Focusing on oxidative stress in illness: promise and limitations of antioxidant remedy. Nat Rev Drug Discov. 2021;20:689–709. https://doi.org/10.1038/s41573-021-00233-1.
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic acid phenethyl ester (CAPE): biosynthesis, derivatives and formulations with neuroprotective actions. Antioxidants (Basel). 2023;12:1500. https://doi.org/10.3390/antiox12081500.
Serarslan G, Altuğ E, Kontas T, Atik E, Avci G. Caffeic acid phenethyl ester accelerates cutaneous wound therapeutic in a rat mannequin and reduces oxidative stress. Clin Exp Dermatol. 2007;32:709–15. https://doi.org/10.1111/j.1365-2230.2007.02470.x.
Pittalà V, Salerno L, Romeo G, Acquaviva R, Di Giacomo C, Sorrenti V. Therapeutic potential of caffeic acid phenethyl ester (CAPE) in diabetes. Curr Med Chem. 2018;25:4827–36. https://doi.org/10.2174/0929867324666161118120908.
Lin MW, Yang SR, Huang MH, Wu SN. Stimulatory actions of caffeic acid phenethyl ester, a identified inhibitor of NF-kappaB activation, on Ca2+-activated Ok+ present in pituitary GH3 cells. J Biol Chem. 2004;279:26885–92. https://doi.org/10.1074/jbc.M400356200.
Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB, Abdel-Rahman SZ. Caffeic acid phenethyl ester: a overview of its antioxidant exercise, protecting results towards ischemia-reperfusion damage and drug antagonistic reactions. Crit Rev Meals Sci Nutr. 2016;56:2183–90. https://doi.org/10.1080/10408398.2013.821967.
Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and neuroprotection: a overview. Biomolecules. 2021;11:176. https://doi.org/10.3390/biom11020176.
Lee HY, Jeong YI, Kim EJ, Lee KD, Choi SH, Kim YJ, Kim DH, Choi KC. Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their organic exercise. J Pharm Sci. 2015;104:144–54. https://doi.org/10.1002/jps.24278.
Weng YC, Chuang ST, Lin YC, Chuang CF, Chi TC, Chiu HL, Kuo YH, Su MJ. Caffeic acid phenylethyl amide protects towards the metabolic penalties in diabetes mellitus induced by food regimen and streptozocin. Evid Based mostly Complement Alternat Med. 2012;2012: 984780. https://doi.org/10.1155/2012/984780.
Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory results (overview). Exp Ther Med. 2015;9:1582–8. https://doi.org/10.3892/etm.2015.2346.
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug supply: from historical past to therapeutic purposes. Nanomaterials (Basel). 2022;12:4494. https://doi.org/10.3390/nano12244494.
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The historical past of nanoscience and nanotechnology: from chemical-physical purposes to nanomedicine. Molecules. 2019;25:112. https://doi.org/10.3390/molecules25010112.
Malik S, Muhammad Ok, Waheed Y. Nanotechnology: a revolution in fashionable trade. Molecules. 2023;28:661. https://doi.org/10.3390/molecules28020661.
Cha BG, Kim J. Practical mesoporous silica nanoparticles for bio-imaging purposes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1515. https://doi.org/10.1002/wnan.1515.
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a complete overview on synthesis and up to date advances. Pharmaceutics. 2018;10:118. https://doi.org/10.3390/pharmaceutics10030118.
Noureddine A, Maestas-Olguin A, Tang L, Corman-Hijar JI, Olewine M, Krawchuck JA, Tsala Ebode J, Edeh C, Dang C, Negrete OA, et al. Way forward for mesoporous silica nanoparticles in nanomedicine: protocol for reproducible synthesis, characterization, lipid coating, and loading of therapeutics (chemotherapeutic, proteins, siRNA and mRNA). ACS Nano. 2023;17:16308–25. https://doi.org/10.1021/acsnano.3c07621.
Duan F, Feng X, Jin Y, Liu D, Yang X, Zhou G, Liu D, Li Z, Liang XJ, Zhang J. Steel-carbenicillin framework-based nanoantibiotics with enhanced penetration and extremely environment friendly inhibition of MRSA. Biomaterials. 2017;144:155–65. https://doi.org/10.1016/j.biomaterials.2017.08.024.
Liu XC, Wu CZ, Hu XF, Wang TL, Jin XP, Ke SF, Wang E, Wu G. Gastrodin attenuates neuronal apoptosis and neurological deficits after experimental intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2020;29: 104483. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104483.
Qu J, Chen W, Hu R, Feng H. The damage and remedy of reactive oxygen species in intracerebral hemorrhage mitochondria. Oxid Med Cell Longev. 2016;2016:2592935. https://doi.org/10.1155/2016/2592935.
Wang M, Solar X, Wang Y, Deng X, Miao J, Zhao D, Solar Ok, Li M, Wang X, Solar W, Qin J. Building of selenium nanoparticle-loaded mesoporous silica nanoparticles with potential antioxidant and antitumor actions as a selenium complement. ACS Omega. 2022;7:44851–60. https://doi.org/10.1021/acsomega.2c04975.
Yuan X, Jia Z, Li J, Liu Y, Huang Y, Gong Y, Guo X, Chen X, Cen J, Liu J. A diselenide bond-containing ROS-responsive ruthenium nanoplatform delivers nerve progress issue for Alzheimer’s illness administration by repairing and selling neuron regeneration. J Mater Chem B. 2021;9:7835–47. https://doi.org/10.1039/d1tb01290h.
Zhu R, He Q, Li Z, Ren Y, Liao Y, Zhang Z, Dai Q, Wan C, Lengthy S, Kong L, et al. ROS-cleavable diselenide nanomedicine for NIR-controlled drug launch and on-demand synergistic chemo-photodynamic remedy. Acta Biomater. 2022;153:442–52. https://doi.org/10.1016/j.actbio.2022.09.061.
Shen Z, Wen H, Zhou H, Hao L, Chen H, Zhou X. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin launch. Mater Sci Eng C Mater Biol Appl. 2019;105: 110073. https://doi.org/10.1016/j.msec.2019.110073.
Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang Ok, Wang J, Liu Z. Polydopamine coated single-walled carbon nanotubes as a flexible platform with radionuclide labeling for multimodal tumor imaging and remedy. Theranostics. 2016;6:1833–43. https://doi.org/10.7150/thno.16047.
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising purposes for floor modification and superior nanomedicine. ACS Nano. 2019;13:8537–65. https://doi.org/10.1021/acsnano.9b04436.
Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal efficiency for tumor multimodal remedies. Adv Sci (Weinh). 2018;5:1800510. https://doi.org/10.1002/advs.201800510.
Jin A, Wang Y, Lin Ok, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5:522–41. https://doi.org/10.1016/j.bioactmat.2020.04.003.
Yang B, Wang Ok, Zhang D, Ji B, Zhao D, Wang X, Zhang H, Kan Q, He Z, Solar J. Polydopamine-modified ROS-responsive prodrug nanoplatform with enhanced stability for exact therapy of breast most cancers. RSC Adv. 2019;9:9260–9. https://doi.org/10.1039/c9ra01230c.
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-based drug supply nanosystems: a possible strategy for glioma therapy. Int J Nanomed. 2022;17:3751–75. https://doi.org/10.2147/IJN.S378217.
Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn(3)O(4)@PDA@Pd-SS31 nanozymes cut back oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials. 2024;305: 122449. https://doi.org/10.1016/j.biomaterials.2023.122449.
Zhang J, Zhou Y, Jiang Z, He C, Wang B, Wang Q, Wang Z, Wu T, Chen X, Deng Z, et al. Bioinspired polydopamine nanoparticles as environment friendly antioxidative and anti inflammatory enhancers towards UV-induced pores and skin injury. J Nanobiotechnology. 2023;21:354. https://doi.org/10.1186/s12951-023-02107-7.
Zhu TT, Wang H, Gu HW, Ju LS, Wu XM, Pan WT, Zhao MM, Yang JJ, Liu PM. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory despair remedy. J Nanobiotechnology. 2023;21:52. https://doi.org/10.1186/s12951-023-01807-4.
Dai S, Wei J, Zhang H, Luo P, Yang Y, Jiang X, Fei Z, Liang W, Jiang J, Li X. Intermittent fasting reduces neuroinflammation in intracerebral hemorrhage via the Sirt3/Nrf2/HO-1 pathway. J Neuroinflammation. 2022;19:122. https://doi.org/10.1186/s12974-022-02474-2.
Kastvig MH, Bøtker JP, Ge G, Andersen ML. Measurement of hydrogen peroxide vapor in powders with potassium titanium oxide oxalate loaded cellulose pellets as probes. MethodsX. 2021;8: 101405. https://doi.org/10.1016/j.mex.2021.101405.
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13:420–33.
Wang J. Preclinical and scientific analysis on irritation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77. https://doi.org/10.1038/nrneurol.2017.69.
Xiong XY, Liu L, Yang QW. Features and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44. https://doi.org/10.1016/j.pneurobio.2016.05.001.
Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization by way of PGC-1α in situations of neuroinflammatory damage. Mind Behav Immun. 2017;64:162–72. https://doi.org/10.1016/j.bbi.2017.03.003.
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Entrance Mol Neurosci. 2022;15:1013706. https://doi.org/10.3389/fnmol.2022.1013706.
Han R, Lan X, Han Z, Ren H, Aafreen S, Wang W, Hou Z, Zhu T, Qian A, Han X, et al. Enhancing outcomes in intracerebral hemorrhage via microglia/macrophage-targeted IL-10 supply with phosphatidylserine liposomes. Biomaterials. 2023;301: 122277. https://doi.org/10.1016/j.biomaterials.2023.12227.
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized nanomaterials able to crossing the blood-brain barrier. ACS Nano. 2024;18:1820–45. https://doi.org/10.1021/acsnano.3c10674.
Yuan J, Li L, Yang Q, Ran H, Wang J, Hu Ok, Pu W, Huang J, Wen L, Zhou L, et al. Focused therapy of ischemic stroke by bioactive nanoparticle-derived eactive oxygen species responsive and inflammation-resolving nanotherapies. ACS Nano. 2021;15:16076–94. https://doi.org/10.1021/acsnano.1c04753.
Ding S, Khan AI, Cai X, Music Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug supply methods. Mater As we speak (Kidlington). 2020;37:112–25. https://doi.org/10.1016/j.mattod.2020.02.001.
Preserve RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Mind endothelial cell junctions after cerebral hemorrhage: modifications, mechanisms and therapeutic targets. J Cereb Blood Circulate Metab. 2018;38:1255–75. https://doi.org/10.1177/0271678X18774666.
Shi Y, van der Meel R, Chen X, Lammers T. The EPR impact and past: methods to enhance tumor concentrating on and most cancers nanomedicine therapy efficacy. Theranostics. 2020;10:7921–4. https://doi.org/10.7150/thno.49577.