[HTML payload içeriği buraya]
32.6 C
Jakarta
Sunday, November 24, 2024

Manipulation in root-associated microbiome by way of carbon nanosol for plant progress enhancements | Journal of Nanobiotechnology


  • Arif I, Batool M, Schenk PM. Plant microbiome engineering: anticipated advantages for improved crop progress and resilience. Traits Biotechnol. 2020;38(12):1385–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bhattacharyya PNJD. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol iotechnol. 2012;28(4):1327–50.

    Article 
    CAS 

    Google Scholar
     

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA. Impact of phosphate solubilization microorganisms (PSM) and plant progress selling rhizobacteria (PGPR) on yield and yield elements of corn (Zea mays L.). World Acad Sci Eng Technol. 2009;49(1):90–2.


    Google Scholar
     

  • Lucas Garcia J, Probanza A, Ramos B, Barriuso J, Gutierrez Manero F. Results of inoculation with plant progress selling rhizobacteria (PGPRs) and Sinorhizobium fredii on organic nitrogen fixation, nodulation and progress of Glycine max cv. Osumi. Plant Soil. 2004;267:143–53.

    Article 

    Google Scholar
     

  • Ipek M, Aras S, Arıkan Ş, Eşitken A, Pırlak L, Dönmez MF, Turan M. Root plant progress selling rhizobacteria inoculations improve ferric chelate reductase (FC-R) exercise and Fe vitamin in pear beneath calcareous soil situations. Sci Hortic. 2017;219:144–51.

    Article 
    CAS 

    Google Scholar
     

  • Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant progress selling exercise beneath salt stress. Plant Soil. 2013;366:93–105.

    Article 
    CAS 

    Google Scholar
     

  • Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant progress selling rhizobacteria (PGPR): a overview. Cogent Meals Agric. 2016;2(1):1127500.


    Google Scholar
     

  • Della Mónica IFWVA, Stefanoni Rubio PJ, Vaca-Paulín R, Yañez-Ocampo G. Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological perception. Arch Microbiol. 2022;204(6):316.

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interaction between nano-enabled agrochemicals and the plant-associated microbiome. Traits Plant Sci. 2023;16:1310.

    Article 

    Google Scholar
     

  • An C, Solar C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C. Nanomaterials and nanotechnology for the supply of agrochemicals: methods in the direction of sustainable agriculture. J Nanobiotechnol. 2022;20(1):1–19.

    Article 

    Google Scholar
     

  • Hussain M, Shakoor N, Adeel M, Ahmad MA, Zhou H, Zhang Z, Xu M, Rui Y, White JC. Nano-enabled plant microbiome engineering for illness resistance. Nano Right this moment. 2023;48: 101752.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials enhance maize yield beneath salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environ Pollut. 2022;299: 118900.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmed T, Noman M, Jiang H, Shahid M, Ma C, Wu Z, Nazir MM, Ali MA, White JC, Chen J. Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight illness by modulating plant protection response and dietary standing of rice (Oryza sativa L.). Nano Right this moment. 2022;45:101547.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: useful rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022;9(1):302–12.

    Article 
    CAS 

    Google Scholar
     

  • Rashid MI, Shah GA, Sadiq M, Amin Nu, Ali AM, Ondrasek G, Shahzad Ok. Nanobiochar and copper oxide nanoparticles combination synergistically will increase soil nutrient availability and improves wheat manufacturing. Vegetation. 2023;12(6):1312.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Afzal S, Singh NK. Impact of zinc and iron oxide nanoparticles on plant physiology, seed high quality and microbial neighborhood construction in a rice-soil-microbial ecosystem. Environ Pollut. 2022;314: 120224.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao L, Chen S, Tan X, Yan X, Zhang W, Huang Y, Ji R, White JC. Environmental implications of MoS2 nanosheets on rice and related soil microbial communities. Chemosphere. 2022;291: 133004.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan ST. Interplay of engineered nanomaterials with soil microbiome and crops: their affect on plant and soil well being. Maintain Agric Rev. 2020;41:181–99.

    Article 

    Google Scholar
     

  • Wang C, Yue L, Cheng B, Chen F, Zhao X, Wang Z, Xing B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: useful rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ Sci Nano. 2022;9(1):302–12.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Jia X, Chen S, Wang J, Ji R, Zhao L. Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) crops. Environ Pollut. 2020;267:115608.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lewis RW, Bertsch PM, McNear DH. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally related useful soil micro organism–a crucial overview. Nanotoxicology. 2019;13(3):392–428.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khanna Ok, Kohli SK, Handa N, Kaur H, Ohri P, Bhardwaj R, Yousaf B, Rinklebe J, Ahmad P. Enthralling the affect of engineered nanoparticles on soil microbiome: a concentric strategy in the direction of environmental dangers and cogitation. Ecotoxicol Environ Saf. 2021;222: 112459.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rodrigues ES, Montanha GS, de Almeida E, Fantucci H, Santos RM, de Carvalho HW. Impact of nano cerium oxide on soybean (Glycine max L. Merrill) crop uncovered to environmentally related concentrations. Chemosphere. 2021;273:128492.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cao Z, Stowers C, Rossi L, Zhang W, Lombardini L, Ma X. Physiological results of cerium oxide nanoparticles on the photosynthesis and water use effectivity of soybean (Glycine max (L.) Merr). Environ Sci Nano. 2017;4(5):1086–94.

    Article 
    CAS 

    Google Scholar
     

  • Zhao F, Xin X, Cao Y, Su D, Ji P, Zhu Z, He Z. Use of carbon nanoparticles to enhance soil fertility, crop progress and nutrient uptake by corn (Zea mays L.). Nanomaterials. 2021;11(10):2717.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang H, Zhang M, Tune Y, Li H, Huang H, Shao M, Liu Y, Kang Z. Carbon dots promote the expansion and photosynthesis of mung bean sprouts. Carbon. 2018;136:94–102.

    Article 
    CAS 

    Google Scholar
     

  • Rahmani N, Radjabian T, Soltani BM. Impacts of foliar publicity to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Biochem. 2020;150:27–38.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chung H, Kim MJ, Ko Ok, Kim JH, Kwon H-a, Hong I, Park N, Lee S-W, Kim W. Results of graphene oxides on soil enzyme exercise and microbial biomass. Sci Whole Environ. 2015;514:307–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N. Modification of agricultural soil with metallic nanoparticles: results on soil enzyme exercise and microbial neighborhood composition. Environ Sci Technol. 2018;52(4):1908–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: intestine microbiota/microbiome-mediated results of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90–5.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ge Y, Schimel JP, Holden PA. Identification of soil micro organism prone to TiO2 and ZnO nanoparticles. Appl Environ Microbiol. 2012;78(18):6749–58.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen LYJ, Li X, Liang T, Nie C, Xie F, Liu Ok, Peng X, Xie J. Carbon nanoparticles improve potassium uptake by way of upregulating potassium channel expression and imitating organic ion channels in BY-2 cells. J Nanobiotechnology. 2020;18:21.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang JLT, Li HJ, Yin QS, Zhang YL, Zhou HP, Zhang SX. Results of nano-carbon sol on physiological traits of root system and potassium absorption of flue-cured tobacco. Yancao Keji. 2015;48(1):7–11.

    CAS 

    Google Scholar
     

  • Wang C, Hua Y, Liang T, Guo Y, Wang L, Zheng X, Liu P, Zheng Q, Kang Z, Xu Y. Built-in analyses of ionomics, phytohormone profiles, transcriptomics, and metabolomics reveal a pivotal position of carbon-nano sol in selling the expansion of tobacco crops. BMC Plant Biol. 2024;24(1):473.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li D, Li T, Yang X, Wang H, Chu J, Dong H, Lu P, Tao J, Cao P, Jin J. Carbon nanosol promotes plant progress and broad-spectrum resistance. Environ Res. 2024;251: 118635.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng L, Tao J, Qu Z, Lu P, Liang T, Meng L, Zhang W, Liu N, Zhang J, Cao P. Carbon nanosol-induced assemblage of a plant-beneficial microbiome consortium. J Nanobiotechnol. 2023;21(1):436.

    Article 
    CAS 

    Google Scholar
     

  • Chen LWH, Li X, Nie C, Liang T, Xie F. Extremely hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv. 2018;8:35246–56.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cui A-L, Feng G-X, Zhao Y-F, Kou H-Z, Li H, Zhu G-H, Hwang H-S, Oh H-C, Kwon Y-J, Lee D-C. Synthesis and separation of mellitic acid and graphite oxide colloid by electrochemical oxidation of graphite in deionized water. Electrochem commun. 2009;11(2):409–12.

    Article 
    CAS 

    Google Scholar
     

  • Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH. Host choice shapes crop microbiome meeting and community complexity. New Phytol. 2021;229(2):1091–104.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. Excessive-throughput fluorometric measurement of potential soil extracellular enzyme actions. J Vis Exp. 2013;81: e50961.


    Google Scholar
     

  • Quast CPE, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database venture: improved information processing and web-based instruments. Nucleic Acids Res. 2013;41(Database challenge):D590-596.

    PubMed 
    CAS 

    Google Scholar
     

  • Nilsson RHLK, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard Ok, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov Ok. The UNITE database for molecular identification of fungi: dealing with darkish taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;8(D1):D259–64.

    Article 

    Google Scholar
     

  • Nurk SMD, Korobeynikov A, Pevzner PA. metaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 2017;5:824–34.

    Article 

    Google Scholar
     

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook dinner H, Mende DR, Letunic I, Rattei T, Jensen LJ. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource primarily based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47(D1):D309–14.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Buchfink B, Reuter Ok, Drost H-G. Delicate protein alignments at tree-of-life scale utilizing DIAMOND. Nat Strategies. 2021;18(4):366–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological community analyses. BMC Bioinf. 2012;13:1–20.

    Article 

    Google Scholar
     

  • Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological community analyses. BMC Bioinform. 2012;13:1–20.

    Article 

    Google Scholar
     

  • Bastian MHS, Jacomy M. Gephi: an open supply software program for exploring and manipulating networks. In: Third worldwide AAAI convention on weblogs and social media. 2009.

  • Zhang J, Liu Y-X, Guo X, Qin Y, Garrido-Oter R, Schulze-Lefert P, Bai Y. Excessive-throughput cultivation and identification of micro organism from the plant root microbiota. Nat Protoc. 2021;16(2):988–1012.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kumar SSG, Li M, Knyaz C, Tamura Ok. MEGA X: molecular evolutionary genetics evaluation throughout computing platforms. Mol Biol Evol. 2018;35(6):1547–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD. SPAdes: a brand new genome meeting algorithm and its functions to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Love MIHW, Anders S. Moderated estimation of fold change and dispersion for RNA-seq information with DESeq2. Genome Biol. 2014;15(12):550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Z, Dai H, Wang G, Peng Y, Liao F, Wu J, Liang T. Carbon nanoparticles promoted the absorption of potassium ions by tobacco roots by way of regulation of Ok+ flux and ion channel gene expression. Curr Nanosci. 2024;20(3):390–8.

    Article 
    CAS 

    Google Scholar
     

  • Lijuan C, Huibo H, Zuguo S, Jianli Y, Chang G, Lu D, Dongfei L. Results of foliar utility of carbon nanosol on progress of potted tobacco seedlings. J Henan Agric Sci. 2024;53(8):44.


    Google Scholar
     

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant progress and growth: a perspective evaluation. Sci Whole Environ. 2018;630:1413–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Chook N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL. Publicity of engineered nanomaterials to crops: Insights into the physiological and biochemical responses-a overview. Plant Physiol Biochem. 2017;110:236–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Feng Y, Wang C, Chen F, Cao X, Wang J, Yue L, Wang Z. Cerium oxide nanomaterials improved cucumber flowering, fruit yield and high quality: the rhizosphere impact. Environ Sci Nano. 2023. https://doi.org/10.1039/D3EN00213F.

    Article 
    PubMed 

    Google Scholar
     

  • Jordan JT, Oates R, Subbiah S, Payton PR, Singh KP, Shah SA, Inexperienced MJ, Klein DM, Cañas-Carrell JE. Carbon nanotubes have an effect on early progress, flowering time and phytohormones in tomato. Chemosphere. 2020;256: 127042.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Juárez-Maldonado AGT, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: the magnitude of the affect of nanomaterials in microorganisms and crops. J Adv Res. 2021;31:113–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in micro organism and aquatic microalgae–state-of-the-art and information gaps. Nanotoxicology. 2014;8(6):605–30.

    Article 

    Google Scholar
     

  • Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, Bellani L, Castiglione MR. Exploring the interplay between polystyrene nanoplastics and Allium cepa throughout germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol Biochem. 2020;149:170–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N. Impact of nanoparticles on crops and soil microbial communities. J Soils Sediments. 2018;18:2179–87.

    Article 
    CAS 

    Google Scholar
     

  • Jangid Ok, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use historical past has a stronger affect on soil microbial neighborhood composition than aboveground vegetation and soil properties. Soil Biol Biochem. 2011;43(10):2184–93.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled enhancements of progress and dietary high quality in meals crops pushed by rhizosphere processes. Environ Int. 2020;142: 105831.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM. Taxonomical and practical microbial neighborhood choice in soybean rhizosphere. ISME J. 2014;8(8):1577–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Panke-Buisse Ok, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J. Choice on soil microbiomes reveals reproducible impacts on plant perform. ISME J. 2015;9(4):980–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen within the rhizosphere and plant progress promotion by microorganisms. In.: Springer; 2009.

    Guide 

    Google Scholar
     

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D. Genome survey and characterization of endophytic micro organism exhibiting a useful impact on progress and growth of poplar timber. Appl Environ Microbiol. 2009;75(3):748–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • De Roy Ok, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. Artificial microbial ecosystems: an thrilling instrument to know and apply microbial communities. Environ Microbiol. 2014;16(6):1472–81.

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interaction between nano-enabled agrochemicals and the plant-associated microbiome. Traits Plant Sci. 2023. https://doi.org/10.1016/j.tplants.2023.06.001.

    Article 
    PubMed 

    Google Scholar
     

  • Finkel OM, Salas-González I, Castrillo G, Conway JM, Legislation TF, Teixeira PJPL, Wilson ED, Fitzpatrick CR, Jones CD, Dangl JL. A single bacterial genus maintains root progress in a posh microbiome. Nature. 2020;587(7832):103–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Moisan Ok, Cordovez V, van de Zande EM, Raaijmakers JM, Dicke M, Lucas-Barbosa D. Volatiles of pathogenic and non-pathogenic soil-borne fungi have an effect on plant growth and resistance to bugs. Oecologia. 2019;190(3):589–604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee S, Behringer G, Hung R, Bennett J. Results of fungal unstable natural compounds on Arabidopsis thaliana progress and gene expression. Fungal Ecol. 2019;37:1–9.

    Article 

    Google Scholar
     

  • Jain S, Varma A, Tuteja N, Choudhary DK. Bacterial volatiles in promotion of plant beneath biotic stress. Volatiles Meals Sec. 2017;2017:299–311.

    Article 

    Google Scholar
     

  • Lee S, Yap M, Behringer G, Hung R, Bennett JW. Unstable natural compounds emitted by Trichoderma species mediate plant progress. Fungal Biol Biotechnol. 2016;3(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles