Mizrahi, J. D., Surana, R., Valle, J. W. & Shroff, R. T. Pancreatic most cancers. Lancet 395, 2008–2020 (2020).
Neoptolemos, J. P. et al. Therapeutic developments in pancreatic most cancers: present and future views. Nat. Rev. Gastroenterol. Hepatol. 15, 333–348 (2018).
Wooden, L. D., Canto, M. I., Jaffee, E. M. & Simeone, D. M. Pancreatic most cancers: pathogenesis, screening, prognosis, and therapy. Gastroenterology 163, 386–402 (2022).
Binenbaum, Y., Na’ara, S. & Gil, Z. Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist. Updat. 23, 55–68 (2015).
Ho, W. J., Jaffee, E. M. & Zheng, L. The tumour microenvironment in pancreatic most cancers—scientific challenges and alternatives. Nat. Rev. Clin. Oncol. 17, 527–540 (2020).
Sherman, M. H. & Beatty, G. L. Tumor microenvironment in pancreatic most cancers pathogenesis and therapeutic resistance. Annu. Rev. Pathol. 18, 123–148 (2023).
Magnon, C. et al. Autonomic nerve growth contributes to prostate most cancers development. Science 341, 1236361 (2013).
Amit, M. et al. Lack of p53 drives neuron reprogramming in head and neck most cancers. Nature 578, 449–454 (2020).
Zhang, Y. et al. Most cancers cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab. 34, 1999–2017 (2022).
Banh, R. S. et al. Neurons launch serine to help mRNA translation in pancreatic most cancers. Cell 183, 1202–1218 (2020).
Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic most cancers. Most cancers Cell 33, 75–90 (2018).
Demir, I. E., Friess, H. & Ceyhan, G. O. Neural plasticity in pancreatitis and pancreatic most cancers. Nat. Rev. Gastroenterol. Hepatol. 12, 649–659 (2015).
Hanahan, D. & Monje, M. Most cancers hallmarks intersect with neuroscience within the tumor microenvironment. Most cancers Cell 41, 573–580 (2023).
Jurcak, N. R. et al. Axon steerage molecules promote perineural invasion and metastasis of orthotopic pancreatic tumors in mice. Gastroenterology 157, 838–850 (2019).
Deshpande, Okay. et al. Neuronal publicity induces neurotransmitter signaling and synaptic mediators in tumors early in mind metastasis. Neuro Oncol. 24, 914–924 (2022).
Cervantes-Villagrana, R. D., Albores-García, D., Cervantes-Villagrana, A. R. & García-Acevez, S. J. Tumor-induced neurogenesis and immune evasion as targets of modern anti-cancer therapies. Sign Transduct. Goal. Ther. 5, 99 (2020).
Khanmammadova, N., Islam, S., Sharma, P. & Amit, M. Neuro-immune interactions and immuno-oncology. Tendencies Most cancers 9, 636–649 (2023).
Li, J., Kang, R. & Tang, D. Mobile and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Most cancers Commun. 41, 642–660 (2021).
Sugimoto, M. et al. Prognostic affect of M2 macrophages at neural invasion in sufferers with invasive ductal carcinoma of the pancreas. Eur. J. Most cancers 50, 1900–1908 (2014).
Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic swap in prostate most cancers. Science 358, 321–326 (2017).
Chang, A. et al. Beta-blockade enhances anthracycline management of metastasis in triple-negative breast most cancers. Sci. Transl. Med. 15, eadf1147 (2023).
Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal sign transduction. Annu. Rev. Biochem. 72, 609–642 (2003).
Nakagawara, A. Trk receptor tyrosine kinases: a bridge between most cancers and neural growth. Most cancers Lett. 169, 107–114 (2001).
O’Keeffe, G. W., Gutierrez, H., Pandolfi, P. P., Riccardi, C. & Davies, A. M. NGF-promoted axon progress and goal innervation requires GITRL-GITR signaling. Nat. Neurosci. 11, 135–142 (2008).
Silverman, D. A. et al. Most cancers-associated neurogenesis and nerve–most cancers cross-talk. Most cancers Res. 81, 1431–1440 (2021).
Allen, J. Okay. et al. Sustained adrenergic signaling promotes intratumoral innervation by means of BDNF induction. Most cancers Res. 78, 3233–3242 (2018).
Hong, D. S. et al. Larotrectinib in sufferers with TRK fusion-positive strong tumours: a pooled evaluation of three part 1/2 scientific trials. Lancet Oncol. 21, 531–540 (2020).
Liu, D. et al. Characterization of on-target antagonistic occasions brought on by TRK inhibitor remedy. Ann. Oncol. 31, 1207–1215 (2020).
Jahromi, L. P. & Fuhrmann, G. Bacterial extracellular vesicles: understanding biology promotes purposes as nanopharmaceuticals. Adv. Drug Deliv. Rev. 173, 125–140 (2021).
Li, M. et al. Bacterial outer membrane vesicles as a platform for biomedical purposes: an replace. J. Management. Launch 323, 253–268 (2020).
Zhuang, W. R. et al. Bacterial outer membrane vesicle primarily based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity. Nat. Commun. 14, 1675 (2023).
Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. & Eberl, L. Composition and features of bacterial membrane vesicles. Nat. Rev. Microbiol. 21, 415–430 (2023).
Wei, B. et al. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli mixed with immunogenic cell loss of life for most cancers immunotherapy. Nano Lett. 21, 4231–4240 (2021).
Qin, J. et al. Bacterial outer membrane vesicle-templated biomimetic nanoparticles for synergistic photothermo-immunotherapy. Nano Right this moment 46, 101591 (2022).
Puurunen, M. Okay. et al. Security and pharmacodynamics of an engineered E. coli Nissle for the therapy of phenylketonuria: a first-in-human part 1/2a examine. Nat. Metab. 3, 1125–1132 (2021).
Whitney, M. A. et al. Fluorescent peptides spotlight peripheral nerves throughout surgical procedure in mice. Nat. Biotechnol. 29, 352–356 (2011).
You, H. et al. Sight and swap off: nerve density visualization for interventions focusing on nerves. Sci. Adv. 6, eaax6040 (2020).
Kaduri, M. et al. Focusing on neurons within the tumor microenvironment with bupivacaine nanoparticles reduces breast most cancers development and metastases. Sci. Adv. 7, eabj5435 (2021).
Madeo, M. et al. Most cancers exosomes induce tumor innervation. Nat. Commun. 9, 4284 (2018).
Tian, Z. et al. TIMP1 derived from pancreatic most cancers cells stimulates Schwann cells and promotes the incidence of perineural invasion. Most cancers Lett. 546, 215863 (2022).
Gysler, S. M. & Drapkin, R. Tumor innervation: peripheral nerves take management of the tumor microenvironment. J. Clin. Make investments. 131, e147276 (2021).
Arnaoutova, I. & Kleinman, H. Okay. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5, 628–635 (2010).
Feng, Q. et al. Engineered bacterial outer membrane vesicles as controllable two-way adaptors to activate macrophage phagocytosis for improved tumor immunotherapy. Adv. Mater. 34, 2206200 (2022).
Borsini, A., Zunszain, P. A., Thuret, S. & Pariante, C. M. The position of inflammatory cytokines as key modulators of neurogenesis. Tendencies Neurosci. 38, 145–157 (2015).
Neumann, H. et al. Tumor necrosis issue inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J. Neurosci. 22, 854–862 (2002).
Wei, Z. et al. Boosting anti-PD-1 remedy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 12, 440 (2021).
Chu, X. et al. Blocking most cancers–nerve crosstalk for therapy of metastatic bone most cancers ache. Adv. Mater. 34, 2108653 (2022).
Malin, S. A., Davis, B. M. & Molliver, D. C. Manufacturing of dissociated sensory neuron cultures and issues for his or her use in finding out neuronal perform and plasticity. Nat. Protoc. 2, 152–160 (2007).
Martinez-Jothar, L. et al. Insights into maleimide-thiol conjugation chemistry: situations for environment friendly floor functionalization of nanoparticles for receptor focusing on. J. Management. Launch 282, 101–109 (2018).
Wang, Z. et al. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for protected and synergistic most cancers immunochemotherapy. Nat. Nanotechnol. 16, 1130–1140 (2021).