[HTML payload içeriği buraya]
26.7 C
Jakarta
Sunday, November 24, 2024

Full-length single-molecule protein fingerprinting | Nature Nanotechnology


  • Aebersold, R. et al. What number of human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. Okay., Pham, M. H. C., Ko, Okay. S., Rhee, B. D. & Han, J. Different splicing isoforms in well being and illness. Pflügers Arch. 470, 995–1016 (2018).

  • Paronetto, M. P., Passacantilli, I. & Sette, C. Different splicing and cell survival: from tissue homeostasis to illness. Cell Loss of life Differ. 23, 1919–1929 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H. & Caroll, Okay. S. Introduction: posttranslational protein modification. Chem. Rev. 118, 887–888 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carbonara, Okay., Andonovski, M. & Coorssen, J. R. Proteomes are of proteoforms: embracing the complexity. Proteomes 9, 38 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benson, M. D., Ngo, D., Ganz, P. & Gerszten, R. E. Rising affinity reagents for top throughput proteomics: belief, however confirm. Circulation 140, 1610–1612 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Hybrid mass spectrometry approaches in glycoprotein evaluation and their utilization in scoring biosimilarity. Nat. Commun. 7, 13397 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Čaval, T., Tian, W., Yang, Z., Clausen, H. & Heck, A. J. R. Direct high quality management of glycoengineered erythropoietin variants. Nat. Commun. 9, 3342 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siuti, N. & Kelleher, N. L. Decoding protein modifications utilizing top-down mass spectrometry. Nat. Strategies 410, 817–821 (2007).

    Article 

    Google Scholar
     

  • Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, Okay. F. Nanopore sequencing expertise, bioinformatics and purposes. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: purposes and utilities for medical diagnostics. Nucleic Acids Res. 46, 2159–2168 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the best way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Alfaro, J. A. et al. The rising panorama of single-molecule protein sequencing applied sciences. Nat. Strategies 18, 604–617 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floyd, B. M. & Marcotte, E. M. Protein sequencing, one molecule at a time. Annu. Rev. Biophys. 51, 181–200 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timp, W. & Timp, G. Past mass spectrometry, the following step in proteomics. Sci. Adv. 6, eaax8978 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swaminathan, J., Boulgakov, A. A. & Marcotte, E. M. A theoretical justification for single molecule peptide sequencing. PLoS Comput. Biol. 11, e1004080 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriques, S. G., Marblestone, A. H. & Boyden, E. S. A theoretical evaluation of single molecule protein sequencing by way of weak binding spectra. PLoS ONE 14, e0212868 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y., Docter, M., Van Ginkel, J., De Ridder, D. & Joo, C. Single-molecule protein sequencing by way of fingerprinting: computational evaluation. Phys. Biol. 12, 10–16 (2015).

    Article 

    Google Scholar
     

  • de Lannoy, C. V. et al. Analysis of FRET X for single-molecule protein fingerprinting. iScience 24, 103239 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. Unidirectional single-file transport of full-length proteins by way of a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).

  • van Ginkel, J. et al. Single-molecule peptide fingerprinting. Proc. Natl Acad. Sci. USA 115, 3338–3343 (2018).

  • Swaminathan, J. et al. Extremely parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shrestha, P. et al. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. Nat. Nanotechnol. 16, 1362–1370 (2021).

  • Filius, M., Kim, S. H., Severins, I. & Joo, C. Excessive-resolution single-molecule FRET by way of DNA trade (FRET X). Nano Lett. 21, 3295–3301 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filius, M., van Wee, R. & Joo, C. in Single Molecule Evaluation: Strategies and Protocols (eds Heller, I. et al.) 203–213 (Springer, 2024).

  • Van Wee, R., Filius, M. & Joo, C. Finishing the canvas: advances and challenges for DNA-PAINT super-resolution imaging. Traits Biochem. Sci. 11, 918–930 (2021).


    Google Scholar
     

  • Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Tremendous-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, X. et al. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat. Strategies 9, 499–503 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics—increasing scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. & Qian, Okay. Protein O-GlcNAcylation: rising mechanisms and capabilities. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vellosillo, P. & Minguez, P. A worldwide map of associations between kinds of protein posttranslational modifications and human genetic illnesses. iScience 24, 102917 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauri, T. et al. O-GlcNAcylation prediction: an unattained goal. Adv. Appl. Bioinform. Chem. 14, 87–102 (2021).

  • Shi, J., Ruijtenbeek, R. & Pieters, R. J. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 28, 814–824 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, D. L. et al. Catalytic promiscuity of O-GlcNAc transferase allows sudden metabolic engineering of cytoplasmic proteins with 2-azido-2-deoxy-glucose. ACS Chem. Biol. 12, 206–213 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, A., Gloster, T. M., Chou, W. Okay., Vocadlo, D. J. & Tanner, M. E. 6′-Azido-6′-deoxy-UDP-N-acetylglucosamine as a glycosyltransferase substrate. Bioorg. Med. Chem. Lett. 21, 1199–1201 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macdonald, J. I., Munch, H. Okay., Moore, T. & Francis, M. B. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat. Chem. Biol. 11, 326–331 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. S100A8/A9 in irritation. Entrance. Immunol. 9, 1298 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijayan, A. L. et al. Procalcitonin: a promising diagnostic marker for sepsis and antibiotic remedy. J. Intensive Care 5, 51 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senior, A. W. et al. Improved protein construction prediction utilizing potentials from deep studying. Nature 577, 706–710 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungmann, R. et al. Multiplexed 3D mobile super-resolution imaging with DNA-PAINT and Alternate-PAINT. Nat. Strategies 11, 313–318 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erickson, H. P. Measurement and form of protein molecules on the nanometer stage decided by sedimentation, gel filtration, and electron microscopy. Biol. Proced. On-line 11, 32–51 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ree, R., Varland, S. & Arnesen, T. Highlight on protein N-terminal acetylation. Exp. Mol. Med. 50, 1–13 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins by way of oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez, D. H. et al. Engineering a proximity-directed O-GlcNAc transferase for selective protein O-GlcNAcylation in cells. ACS Chem. Biol. 15, 1059–1066 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y.-Y., Ascano, J. M. & Dangle, H. C. Bioorthogonal chemical reporters for monitoring protein acetylation. J. Am. Chem. Soc. 132, 3640–3641 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westcott, N. P., Fernandez, J. P., Molina, H. & Dangle, H. C. Chemical proteomics reveals ADP-ribosylation of small GTPases throughout oxidative stress. Nat. Chem. Biol. 13, 302–308 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rabuka, D., Hubbard, S. C., Laughlin, S. T., Argade, S. P. & Bertozzi, C. R. A chemical reporter technique to probe glycoprotein fucosylation. J. Am. Chem. Soc. 128, 12078–12079 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeggeman, E. et al. Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins utilizing a novel chemoenzymatic methodology. Bioconjugate Chem. 18, 806–814 (2007).

    Article 
    CAS 

    Google Scholar
     

  • van Geel, R. et al. Chemoenzymatic conjugation of poisonous payloads to the globally conserved N-glycan of native mAbs supplies homogeneous and extremely efficacious antibody–drug conjugates. Bioconjugate Chem. 26, 2233–2242 (2015).

    Article 

    Google Scholar
     

  • Tate, E. W., Kalesh, Okay. A., Lanyon-Hogg, T., Storck, E. M. & Thinon, E. World profiling of protein lipidation utilizing chemical proteomic applied sciences. Curr. Opin. Chem. Biol. 24, 48–57 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, N. L. & Anderson, N. G. The human plasma proteome: historical past, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Han, X., Aslanian, A. & Yates, J. R. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483–490 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filius, M. et al. Excessive-speed super-resolution imaging utilizing protein-assisted DNA-PAINT. Nano Lett. 20, 2264–2270 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. H., Kim, H., Jeong, H. & Yoon, T. Y. Encoding a number of digital indicators in DNA barcodes with single-molecule FRET. Nano Lett. 21, 1694–1701 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McCann, J. J., Choi, U. B., Zheng, L., Weninger, Okay. & Bowen, M. E. Optimizing strategies to get well absolute FRET effectivity from immobilized single molecules. Biophys. J. 99, 961–970 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristianini, N. & Shawe-Taylor, J. An Introduction to Assist Vector Machines and Different Kernel-based Studying Strategies (Cambridge College Press, 2000).

  • Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Study. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Pabst, M. et al. A normal method to discover prokaryotic protein glycosylation reveals the distinctive floor layer modulation of an anammox bacterium. ISME J. 16, 346–357 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuh, Okay. N., Zaro, B. W., Piller, F., Piller, V. & Pratt, M. R. Adjustments in metabolic chemical reporter construction yield a selective probe of O-GlcNAc modification. J. Am. Chem. Soc. 136, 12283–12295 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles