[HTML payload içeriği buraya]
26.7 C
Jakarta
Sunday, November 24, 2024

The wonders of X-PDT: an advance path to most cancers theranostics | Journal of Nanobiotechnology


  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. CA Most cancers J Clin. 2022;72:7–33.

    Article 
    PubMed 

    Google Scholar
     

  • Mattiuzzi C, Lippi G. Present Most cancers Epidemiology glossary. J Epidemiol Glob Well being. 2019;9:217–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debien V, De Caluwé A, Wang X, Piccart-Gebhart M, Tuohy VK, Romano E, et al. Immunotherapy in breast most cancers: an summary of present methods and views. NPJ Breast Most cancers. 2023;9:1–10.

    Article 

    Google Scholar
     

  • Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic panorama in main and metastatic liver most cancers. Nat Rev Most cancers. 2021;21:541–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oudkerk M, Liu SY, Heuvelmans MA, Walter JE, Area JK. Lung most cancers LDCT screening and mortality discount—proof, pitfalls and future views. Nat Rev Clin Oncol. 2021;18:135–51.

    Article 
    PubMed 

    Google Scholar
     

  • Schlumberger M, Leboulleux S. Present apply in sufferers with differentiated thyroid most cancers. Nat Rev Endocrinol. 2021;17:176–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandaglia G, Leni R, Bray F, Fleshner N, Freedland SJ, Kibel A, et al. Epidemiology and prevention of prostate most cancers. Eur Urol Oncol. 2021;4:877–92.

    Article 
    PubMed 

    Google Scholar
     

  • Singh D, Vignat J, Lorenzoni V, Eslahi M, Ginsburg O, Lauby-Secretan B, et al. International estimates of incidence and mortality of cervical most cancers in 2020: a baseline evaluation of the WHO International Cervical Most cancers Elimination Initiative. Lancet Glob Well being. 2023;11:e197–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van HLMC, Vrieling A, Van Der HAG, Kogevinas M, Richters A, Kiemeney LA. International developments within the epidemiology of bladder most cancers : challenges for public well being and scientific apply. Nat Rev Clin Oncol. 2023;20:287–304.

    Article 

    Google Scholar
     

  • Esmeeta A, Adhikary S, Dharshnaa V, Swarnamughi P, Ummul Maqsummiya Z, Banerjee A, et al. Plant-derived bioactive compounds in colon most cancers remedy: an up to date assessment. Biomed Pharmacother. 2022;153: 113384.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirza MR, Chase DM, Slomovitz BM, dePont CR, Novák Z, Black D, et al. Dostarlimab for main superior or recurrent endometrial most cancers. N Engl J Med. 2023;388:2145–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choueiri TK, Albiges L, Atkins MB, Bakouny Z, Bratslavsky G, Braun DA, et al. From fundamental science to scientific translation in kidney most cancers: a report from the second kidney most cancers analysis summit. Clin Most cancers Res. 2022;28:831–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Otero P, Ailawadhi S, Arnulf B, Patel Okay, Cavo M, Nooka AK, et al. Ide-cel or commonplace regimens in relapsed and refractory a number of myeloma. N Engl J Med. 2023;388:1002–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armitage JO, Lengthy DL. Mantle-cell lymphoma. N Engl J Med. 2022;386:2495–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hingorani SR. Epithelial and stromal co-evolution and complicity in pancreatic most cancers. Nat Rev Most cancers. 2023;23:57–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown JR, Eichhorst B, Hillmen P, Jurczak W, Kaźmierczak M, Lamanna N, et al. Zanubrutinib or Ibrutinib in relapsed or refractory power lymphocytic leukemia. N Engl J Med. 2023;388:319–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel SP, Othus M, Chen Y, Wright GP, Yost KJ, Hyngstrom JR, et al. Neoadjuvant–adjuvant or adjuvant-only pembrolizumab in superior melanoma. N Engl J Med. 2023;388:813–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in power lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol. 2023;200:137–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pashayan N, Pharoah PDP. The problem of early detection in most cancers. Science. 1979;2020(368):589–90.


    Google Scholar
     

  • Li X, Bao Y, Li Z, Teng P, Ma L, Zhang H, et al. Using antagonistic C-X-C motif chemokine receptor 4 antagonistic peptide functionalized NaGdF4 nanodots for magnetic resonance imaging-guided biotherapy of breast most cancers. Sci Rep. 2024;14:15764.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar Sarangi M, Padhi S, Rath G, Sekhar Nanda S, Kee YD. Advances in immunological and theranostic approaches of gold nanoparticles—a assessment. Inorg Chem Commun. 2023;153:110858.

    Article 
    CAS 

    Google Scholar
     

  • Dutta Gupta Y, Mackeyev Y, Krishnan S, Bhandary S. Mesoporous silica nanotechnology: promising advances in augmenting most cancers theranostics. Most cancers Nanotechnol. 2024;15:1–44.

    Article 

    Google Scholar
     

  • Hosseini SM, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a brand new method in most cancers remedy and analysis: a assessment. Mater Right now Chem. 2023;29: 101400.

    Article 
    CAS 

    Google Scholar
     

  • Yukawa H, Sato Okay, Baba Y. Theranostics functions of quantum dots in regenerative drugs, most cancers drugs, and infectious ailments. Adv Drug Deliv Rev. 2023;200:114863.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Cao Y, Ge X, Zhang Z, Gao S, Tune J. X-ray excited luminescence supplies for most cancers analysis and theranostics. Laser Photon Rev. 2024;18:2300565.

    Article 
    CAS 

    Google Scholar
     

  • Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in most cancers theragnostic and drug supply: a complete assessment. Life Sci. 2024;352: 122899.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahimkhoei V, Alzaidy AH, Abed MJ, Rashki S, Salavati-Niasari M. Advances in inorganic nanoparticles-based drug supply in focused breast most cancers theranostics. Adv Colloid Interface Sci. 2024;329: 103204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev. 2022;51:6177–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Domingues I, Pereira G, Martins P, Duarte H, Santos J, Abreu PH. Utilizing deep studying methods in medical imaging: a scientific assessment of functions on CT and PET. Artif Intell Rev. 2020;53:4093–160.

    Article 

    Google Scholar
     

  • Hsu JC, Nieves LM, Betzer O, Sadan T, Noël PB, Popovtzer R, et al. Nanoparticle distinction brokers for X-ray imaging functions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12:1–26.

    Article 

    Google Scholar
     

  • Wu Q, Zheng Q, He Y, Chen Q, Yang H. Rising nanoagents for medical x-ray imaging. Anal Chem. 2023;95:33–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar W, Zhou Z, Pratx G, Chen X, Chen H. Nanoscintillator-mediated X-ray induced photodynamic remedy for deep-seated tumors: from idea to biomedical functions. Theranostics. 2020;10:1296–318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Liu X, Yang Okay, Chen X, Li W. Pnictogen semimetal (Sb, Bi)-based nanomaterials for most cancers imaging and remedy: a supplies perspective. ACS Nano. 2021;15:2038–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pires L, Calcada C, Grafinger O, Juneja R, Mar S, Leong H, et al. Photosensitizers as radiosensitizers for metastatic and deep-seated tumors: in vitro and ex-ovo preclinical research. Photodiagnosis Photodyn Ther. 2023;41: 103422.

    Article 

    Google Scholar
     

  • Belanova A, Chmykhalo V, Beseda D, Belousova M, Butova V, Soldatov A, et al. A mini-review of X-ray photodynamic remedy (XPDT) nonoagent constituents’ security and related design issues. Photochem Photobiol Sci. 2020;19:1134–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic remedy. Chem Soc Rev. 2016;45:6488–519.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Tune J, Chen X, Yang H. X-ray-activated nanosystems for theranostic functions. Chem Soc Rev. 2019;48:3073–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirakci Okay, Kubát P, Fejfarova Okay, Martinčík J, Nikl M, Lang Okay. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: a brand new class of nanoscintillators. Inorg Chem. 2016;55:803–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei L, Wang Y, Kuzmin A, Hua Y, Zhao J, Xu S, et al. Subsequent technology lanthanide doped nanoscintillators and photon converters. eLight. 2022;2:1–24.

    Article 

    Google Scholar
     

  • Bulin A-L, Vasil’ev A, Belsky A, Amans D, Ledoux G, Dujardin C. Modelling vitality deposition in nanoscintillators to foretell the effectivity of the X-ray-induced photodynamic impact. Nanoscale. 2015;7:5744–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Liu X, Wu W, Yang Okay, Mao R, Ahmad F, et al. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic remedy utilizing Tb-doped Gd-W-nanoscintillators. Angew Chem. 2019;131:2039–44.

    Article 

    Google Scholar
     

  • Tune G, Cheng L, Chao Y, Yang Okay, Liu Z. Rising nanotechnology and superior supplies for most cancers radiation remedy. Adv Mater. 2017;29:1–26.

    Article 

    Google Scholar
     

  • Shen S, Jiang D, Cheng L, Chao Y, Nie Okay, Dong Z, et al. Renal-clearable ultrasmall coordination polymer nanodots for chelator-free 64Cu-labeling and imaging-guided enhanced radiotherapy of most cancers. ACS Nano. 2017;11:9103–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang XD, Chen J, Min Y, Park GB, Shen X, Tune SS, et al. Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and makes use of for most cancers radiation remedy and imaging. Adv Funct Mater. 2014;24:1718–29.

    Article 

    Google Scholar
     

  • Gong T, Li Y, Lv B, Wang H, Liu Y, Yang W, et al. Full-process radiosensitization based mostly on nanoscale metal-organic frameworks. ACS Nano. 2020;14:3032–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for deep tumor remedy. Mini Rev Med Chem. 2021;21:677–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popovich Okay, Procházková L, Pelikánová IT, Vlk M, Palkovský M, Jarý V, et al. Preliminary research on singlet oxygen manufacturing utilizing CeF3:Tb3+@SiO2-PpIX. Radiat Meas. 2016;90:325–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Q, Guo X, Cheng Y, Chudal L, Pandey NK, Zhang J, et al. Use of copper-cysteamine nanoparticles to concurrently allow radiotherapy, oxidative remedy and immunotherapy for melanoma remedy. Sign Transduct Goal Ther. 2020;5:4–6.


    Google Scholar
     

  • Ma L, Zou X, Chen W. A brand new X-ray activated nanoparticle photosensitizer for most cancers remedy. J Biomed Nanotechnol. 2014;10:1501–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Zou X, Bui B, Chen W, Tune KH, Solberg T. X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Appl Phys Lett. 2014;105: 013702.

    Article 

    Google Scholar
     

  • Gadzhimagomedova Z, Zolotukhin P, Equipment O, Kirsanova D, Soldatov A. Nanocomposites for X-ray photodynamic remedy. Int J Mol Sci. 2020;21:1–15.

    Article 

    Google Scholar
     

  • Sengar P, Garcia-Tapia Okay, Chauhan Okay, Jain A, Juarez-Moreno Okay, Borbón-Nuñez HA, et al. Dualphotosensitizer coupled nanoscintillator able to producing sort I and kind II ROS for subsequent technology photodynamic remedy. J Colloid Interface Sci. 2019;536:586–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Zhang X, Shen Y, Shi F, Tune C, Liu T, et al. Extremely-high FRET effectivity NaGdF4: Tb3+-Rose Bengal biocompatible nanocomposite for X-ray excited photodynamic remedy utility. Biomaterials. 2018;184:31–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen MH, Jenh YJ, Wu SK, Chen YS, Hanagata N, Lin FH. Non-invasive photodynamic remedy in mind most cancers by use of Tb3+-doped LaF3 nanoparticles together with photosensitizer by way of X-ray irradiation: a proof-of-concept research. Nanoscale Res Lett. 2017;12:1–6.

    Article 

    Google Scholar
     

  • Elmenoufy AH, Tang Y, Hu J, Xu H, Yang X. A novel deep photodynamic remedy modality mixed with CT imaging established through X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chem Commun. 2015;51:12247–50.

    Article 
    CAS 

    Google Scholar
     

  • Bulin A-L, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, et al. X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J Phys Chem C. 2013;117:21583–9.

    Article 
    CAS 

    Google Scholar
     

  • Kaščáková S, Giuliani A, Lacerda S, Pallier A, Mercère P, Tóth É, et al. X-ray-induced radiophotodynamic remedy (RPDT) utilizing lanthanide micelles: past depth limitations. Nano Res. 2015;8:2373–9.

    Article 

    Google Scholar
     

  • Zhang X, Lan B, Wang S, Gao P, Liu T, Rong J, et al. Low-dose X-ray excited photodynamic remedy based mostly on NaLuF4:Tb3+-Rose Bengal nanocomposite. Bioconjug Chem. 2019;30:2191–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popovich Okay, Tomanová Okay, Čuba V, Procházková L, Pelikánová IT, Jakubec I, et al. LuAG:Pr3+-porphyrin based mostly nanohybrid system for singlet oxygen manufacturing: towards the following technology of PDTX medication. J Photochem Photobiol B. 2018;179:149–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Procházková L, Pelikánová IT, Mihóková E, Dědic R, Čuba V. Novel scintillating nanocomposite for X-ray induced photodynamic remedy. Radiat Meas. 2019;121:13–7.

    Article 

    Google Scholar
     

  • Procházková L, Čuba V, Beitlerová A, Jarý V, Omelkov S, Nikl M. Ultrafast Zn(Cd, Mg)O: Ga nanoscintillators with luminescence tunable by band hole modulation. Decide Specific. 2018;26:29482–94.

    Article 
    PubMed 

    Google Scholar
     

  • Wang GD, Nguyen HT, Chen H, Cox PB, Wang L, Nagata Okay, et al. X-ray induced photodynamic remedy: a mixture of radiotherapy and photodynamic remedy. Theranostics. 2016;6:2295–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekah D, Cooper D, Kudinov Okay, Hill C, Seuntjens J, Bradforth S, et al. Synthesis and characterization of biologically secure, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. J Photochem Photobiol A Chem. 2016;329:26–34.

    Article 
    CAS 

    Google Scholar
     

  • Zou X, Yao M, Ma L, Hossu M, Han X, Juzenas P, et al. X-ray-induced nanoparticle-based photodynamic remedy of most cancers. Nanomedicine. 2014;9:2339–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sapre AA, Novitskaya E, Vakharia V, Cota A, Wrasidlo W, Hanrahan SM, et al. Optimized scintillator YAG: Pr nanoparticles for X-ray inducible photodynamic remedy. Mater Lett. 2018;228:49–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaszewski J, Olszewski J, Rosowska J, Witkowski B, Wachnicki Ł, Wenelska Okay, et al. HfO2: Eu nanoparticles excited by X-rays and UV-visible radiation utilized in organic imaging. J Uncommon Earths. 2019;37:1176–82.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H. Smooth X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/X-ray-induced optical bioimaging. Nanoscale. 2018;10:342–50.

    Article 
    CAS 

    Google Scholar
     

  • Generalov R, Kuan WB, Chen W, Kristensen S, Juzenas P. Radiosensitizing impact of zinc oxide and silica nanocomposites on most cancers cells. Colloids Surf B Biointerfaces. 2015;129:79–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zagami P, Carey LA. Triple detrimental breast most cancers: pitfalls and progress. NPJ Breast Most cancers. 2022;8:1–10.

    Article 

    Google Scholar
     

  • Perou CM, Sorlie T, Eisen MB, Van De RM, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;533:747–52.

    Article 

    Google Scholar
     

  • Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 kinds of most cancers. Cell. 2019;173:291–304.

    Article 

    Google Scholar
     

  • Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, et al. Occasion-free survival with pembrolizumab in early triple-negative breast most cancers. N Engl J Med. 2022;386:556–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Solar W, Shi H, Ma H, Niu G, Li Y, et al. Natural phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic remedy. Nat Commun. 2022;13:1–9.


    Google Scholar
     

  • Zhang B, Liu H, Wang Y, Zhang Y, Cheng J. Software of singlet oxygen-activatable nanocarriers to spice up X-ray-induced photodynamic remedy and cascaded ferroptosis for breast most cancers remedy. J Mater Chem B. 2023;11:9685–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain A, Koyani R, Muñoz C, Sengar P, Contreras OE, Juárez P, et al. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic remedy of most cancers cells. J Colloid Interface Sci. 2018;526:220–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maiti D, Yu H, Kim BS, Naito M, Yamashita S, Kim HJ, et al. Rose Bengal embellished NaYF4: Tb nanoparticles for low dose X-ray-induced photodynamic remedy in most cancers cells. ACS Appl Bio Mater. 2022;5:5477–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maiti D, Yu H, Mochida Y, Received S, Yamashita S, Naito M, et al. Terbium-Rose Bengal coordination nanocrystals-induced ROS manufacturing underneath low-dose X-rays in cultured most cancers cells for photodynamic remedy. ACS Appl Bio Mater. 2023;6:2505–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Liu J, Li Y, Pandey NK, Chen T, Wang L, et al. Research of copper-cysteamine based mostly X-ray induced photodynamic remedy and its results on most cancers cell proliferation and migration in a scientific mimic setting. Bioact Mater. 2022;7:504–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang B, Xue R, Lyu J, Gao A, Solar C. Tumor acidity/redox hierarchical-activable nanoparticles for exact mixture of X-ray-induced photodynamic remedy and hypoxia-activated chemotherapy. J Mater Chem B. 2022;10:3849–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengar P, Juárez P, Meza AV, Arellano DL, Jain A, Chauhan Okay, et al. Growth of a functionalized UV-emitting nanocomposite for the remedy of most cancers utilizing oblique photodynamic remedy. J Nanobiotechnol. 2018;16:1–19.

    Article 

    Google Scholar
     

  • Jiang F, Lee C, Zhang W, Jiang W, Cao Z, Chong HB, et al. Radiodynamic remedy with CsI(na)@MgO nanoparticles and 5-aminolevulinic acid. J Nanobiotechno. 2022;20:1–15.

    Article 

    Google Scholar
     

  • Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JD, Roberts LR. Hepatocellular carcinoma: a world view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sia D, Villanueva A, Friedman SL, Llovet JM. Liver most cancers cell of origin, molecular class, and results on affected person prognosis. Gastroenterology. 2017;152:745–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Pointers for the analysis and administration of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    Article 
    PubMed 

    Google Scholar
     

  • Cao J, Wang J, He C, Fang M. Angiosarcoma: a assessment of analysis and present remedy. Am J Most cancers Res. 2019;9:2303–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzmaurice C, Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, et al. The burden of main liver most cancers and underlying etiologies from 1990 to 2015 on the world, regional, and nationwide degree outcomes from the worldwide burden of illness research 2015. JAMA Oncol. 2017;3:1683–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celsa C, Stornello C, Giuffrida P, Giacchetto CM, Grova M, Rancatore G, et al. Direct-acting antiviral brokers and danger of Hepatocellular carcinoma: essential appraisal of the proof. Ann Hepatol. 2022;27: 100568.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhen X, Pandey NK, Amador E, Hu W, Liu B, Nong W, et al. Potassium iodide enhances the anti-hepatocellular carcinoma impact of copper-cysteamine nanoparticle mediated photodynamic remedy on most cancers remedy. Mater Right now Phys. 2022;27: 100838.

    Article 
    CAS 

    Google Scholar
     

  • Vasuri F, Renzulli M, Fittipaldi S, Brocchi S, Clemente A, Cappabianca S, et al. Pathobiological and radiological method for hepatocellular carcinoma subclassification. Sci Rep. 2019;9:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Mushtaq A, Iqbal MZ, Kong X. Antiviral results of coinage metal-based nanomaterials to fight COVID-19 and its variants. J Mater Chem B. 2022;10:5323–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung most cancers. The Lancet. 2021;398:535–54.

    Article 

    Google Scholar
     

  • Araujo LH, Horn L, Merritt RE, Shilo Okay, Xu-Welliver M, Carbone DP. 69—Most cancers of the lung: non-small cell lung most cancers and small cell lung most cancers. In: Niederhuber JE, Armitage JO, Kastan MB, Doroshow JH, Tepper JE, editors. Abeloff’s scientific oncology. Amsterdam: Elsevier; 2020.


    Google Scholar
     

  • Jiang Y, Su Z, Liang H, Liu J, Liang W, He J. Video-assisted thoracoscopy for lung most cancers: Who’s the way forward for thoracic surgical procedure? J Thorac Dis. 2020;12:4427–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker S, Dahele M, Lagerwaard FJ, Senan S. A essential assessment of latest developments in radiotherapy for non-small cell lung most cancers. Radiat Oncol. 2016;11:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Yang CC, Wang WY, Lin FH, Hou CH. Uncommon-earth-doped calcium carbonate uncovered to X-ray irradiation to induce reactive oxygen species for tumor remedy. Int J Mol Sci. 2019;20:1148.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for beforehand handled, PD-L1-positive, superior non-small-cell lung most cancers (KEYNOTE-010): a randomised managed trial. The Lancet. 2016;387:1540–50.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Solar X, Wang GD, Nagata Okay, Hao Z, Wang A, et al. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic remedy of deep-seated tumors. Mater Horiz. 2017;4:1092–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi F, Bedogni E, Bigi F, Rimoldi T, Cristofolini L, Pinelli S, et al. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic remedy. Sci Rep. 2015;5:1–6.

    Article 

    Google Scholar
     

  • Yang DM, Cvetkovic D, Chen L, Ma CMC. Therapeutic results of in-vivo radiodynamic remedy (RDT) for lung most cancers remedy: a mixture of 15 MV photons and 5-aminolevulinic acid (5-ALA). Biomed Phys Eng Specific. 2022;8: 065031.

    Article 

    Google Scholar
     

  • Sanchez G, Nova J, Rodriguez-Hernandez AE, Solorzano-Restrepo C, Gonzalez J, Olmos M, et al. Solar safety for stopping basal cell and squamous cell pores and skin cancers. Cochrane Database Syst Rev. 2016;2016:1–32.


    Google Scholar
     

  • Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma remedy in assessment. Immunotargets Ther. 2018;7:35–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Fang L, Ni R, Zhang H, Pan G. Altering developments within the illness burden of non-melanoma pores and skin most cancers globally from 1990 to 2019 and its predicted degree in 25 years. BMC Most cancers. 2022;22:1–11.

    Article 

    Google Scholar
     

  • Shi L, Liu P, Wu J, Ma L, Zheng H, Antosh MP, et al. The effectiveness and security of X-PDT for cutaneous squamous cell carcinoma and melanoma. Nanomedicine. 2019;14:2027–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Chen W, Schatte G, Wang W, Joly AG, Huang Y, et al. A brand new Cu-cysteamine advanced: construction and optical properties. J Mater Chem C Mater. 2014;2:4239–46.

    Article 
    CAS 

    Google Scholar
     

  • Pandey NK, Chudal L, Phan J, Lin L, Johnson O, Xing M, et al. A facile technique for the synthesis of copper-cysteamine nanoparticles and research of ROS manufacturing for most cancers remedy. J Mater Chem B. 2019;7:6630–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi J, Murakami M, Mori T, Iwahashi H. Verification of radiodynamic remedy by medical linear accelerator utilizing a mouse melanoma tumor mannequin. Sci Rep. 2018;8:1–9.


    Google Scholar
     

  • Hasegawa T, Takahashi J, Nagasawa S, Doi M, Moriyama A, Iwahashi H. Dna strand break properties of protoporphyrin IX by X-ray irradiation towards melanoma. Int J Mol Sci. 2020;21:2302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR. Colorectal carcinoma: a basic overview and future views in colorectal most cancers. Int J Mol Sci. 2017;18:197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sameer AS. Colorectal most cancers: molecular mutations and polymorphisms. Entrance Oncol. 2013;3:114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stintzing S. Administration of colorectal most cancers. Prime Rep. 2014;6:108.


    Google Scholar
     

  • Sang R, Deng F, Engel A, Goldys E, Deng W. Lipid-polymer nanocarrier platform allows X-ray induced photodynamic remedy towards human colorectal most cancers cells. Biomed Pharmacother. 2022;155: 113837.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan G, Ni Okay, Xu R, Lu Okay, Lin Z, Chan C, et al. Nanoscale steel–natural layers for deeply penetrating X-ray-induced photodynamic remedy. Angew Chem. 2017;56:12102–6.

    Article 
    CAS 

    Google Scholar
     

  • Deng W, McKelvey KJ, Guller A, Fayzullin A, Campbell JM, Clement S, et al. Software of mitochondrially focused nanoconstructs to neoadjuvant X-ray-induced photodynamic remedy for rectal most cancers. ACS Cent Sci. 2020;6:715–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles