Canedo-Dorantes L, Canedo-Ayala M. Pores and skin Acute Wound Therapeutic: A Complete Evaluation. Int J Inflam 2019, 2019:3706315.
Raziyeva Ok, Kim Y, Zharkinbekov Z, Kassymbek Ok, Jimi S, Saparov A. Immunology of Acute and Power Wound Therapeutic. Biomolecules 2021, 11.
Kuraitis D, Rosenthal N, Boh E, McBurney E. Macrophages in dermatology: pathogenic roles and focused therapeutics. Arch Dermatol Res. 2022;314:133–40.
Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: Primary Science, present therapies, and future instructions. Adv Wound Care (New Rochelle). 2018;7:29–45.
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Irritation in power wounds. Int J Mol Sci 2016, 17.
Han G, Ceilley R. Power Wound Therapeutic: a evaluate of present administration and coverings. Adv Ther. 2017;34:599–610.
Heras KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Power wounds: present standing, accessible methods and rising therapeutic options. J Managed Launch. 2020;328:532–50.
Shi Y, Wang S, Zhang W, Zhu Y, Fan Z, Huang Y, Li F, Yang R. Bone marrow mesenchymal stem cells facilitate diabetic wound therapeutic by way of the restoration of epidermal cell autophagy by way of the HIF-1α/TGF-β1/SMAD pathway. Stem Cell Res Ther. 2022;13:314.
Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Domestically administered adipose-derived stem cells speed up wound therapeutic by way of differentiation and vasculogenesis. Cell Transpl. 2011;20:205–16.
Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE. Mesenchymal stem cells overexpressing akt dramatically restore infarcted myocardium and enhance cardiac perform regardless of rare mobile fusion or differentiation. Mol Ther. 2006;14:840–50.
Basu J, Ludlow JW. Cell-based therapeutic merchandise: efficiency assay improvement and software. Regen Med. 2014;9:497–512.
Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: rising frontiers in wound therapeutic. Med Res Rev. 2022;42:2102–25.
Niel G, D’Angelo G, Raposo G. Shedding gentle on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.
Zheng M, Huang M, Ma X, Chen H, Gao X. Harnessing exosomes for the event of Mind Drug Supply methods. Bioconjug Chem. 2019;30:994–1005.
Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD. Exosome uptake by way of clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 supply. J Biol Chem. 2014;289:22258–67.
Joshi BS, Beer MA, Giepmans BNG, Zuhorn IS. Endocytosis of Extracellular vesicles and launch of their Cargo from endosomes. ACS Nano. 2020;14:4444–55.
Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, et al. Donor-derived mind tumor following neural stem cell transplantation in an ataxia telangiectasia affected person. PLoS Med. 2009;6:e1000029.
Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y. Exosomes launched from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound therapeutic by selling collagen synthesis and angiogenesis. J Transl Med. 2015;13:49.
Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically lively exosomes. Stem Cells Dev. 2014;23:1233–44.
Li M, Fang F, Solar M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: an rising paradigm for regenerative drugs. Theranostics. 2022;12:4879–903.
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D’Angelo G, Andaloussi SE, Goetz JG, Gross JC, Hyenne V, et al. The facility of imaging to know extracellular vesicle biology in vivo. Nat Strategies. 2021;18:1013–26.
Lázaro-Ibáñez E, Faruqu FN, Saleh AF, Silva AM, Wang JT-W, Rak J, Al-Jamal KT, Dekker N. Choice of fluorescent, bioluminescent, and Radioactive tracers to precisely mirror extracellular vesicle biodistribution in vivo. ACS Nano. 2021;15:3212–27.
Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular vesicles. Adv Healthc Mater. 2022;11:2100538.
Stephanopoulos N, Ortony JH, Stupp SI. Self-assembly for the synthesis of practical biomaterials. Acta Mater. 2013;61:912–30.
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. twenty fifth anniversary article: Rational Design and Purposes of hydrogels in Regenerative Drugs. Adv Mater. 2014;26:85–124.
Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: a brand new cell-free therapeutic method for pores and skin regeneration. Eur J Pharm Biopharm. 2022;171:50–9.
Murphy SV, Coppi P, Atala A. Alternatives and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4:370–80.
Yan W-C, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JYH, Robinson KS, Wang C-H. 3D bioprinting of pores and skin tissue: from pre-processing to remaining product analysis. Adv Drug Deliv Rev. 2018;132:270–95.
WICHTERLE O. LÍM D: Hydrophilic gels for Organic Use | Nature. Nature, 185:117–8.
Li J, Mooney DJ. Designing hydrogels for managed drug supply. Nat Rev Mater. 2016;1:1–17.
Xu Y, Chen H, Fang Y, Wu J. Hydrogel Mixed with Phototherapy in Wound Therapeutic. Adv Healthc Mater. 2022;11:2200494.
Ma S, Hu H, Wu J, Li X, Ma X, Zhao Z, Liu Z, Wu C, Zhao B, Wang Y, Jing W. Useful extracellular matrix hydrogel modified with MSC-derived small extracellular vesicles for power wound therapeutic. Cell Prolif. 2022;55:13196.
Su J, Hu B-H, Lowe WL, Kaufman DB, Messersmith PB. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials. 2010;31:308–14.
Mardpour S, Ghanian MH, Sadeghi-abandansari H, Mardpour S, Nazari A, Shekari F, Baharvand H. Hydrogel-mediated sustained systemic supply of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in Power Liver failure. ACS Appl Mater Interfaces. 2019;11:37421–33.
Wu Ok, He C, Wu Y, Zhou X, Liu P, Tang W, Yu M, Tian W. Preservation of small extracellular vesicle in gelatin methacryloyl hydrogel by way of lowered particles aggregation for therapeutic purposes. IJN. 2021;16:7831–46.
Solar M, Li Q, Yu H, Cheng J, Wu N, Shi W, Zhao F, Shao Z, Meng Q, Chen H, et al. Cryo-self-assembled silk fibroin sponge as a biodegradable platform for enzyme-responsive supply of exosomes. Bioactive Mater. 2022;8:505–14.
W CWM, X T, Z X, L C, G W, X H. Engineering Bioactive Self-Therapeutic Antibacterial exosomes Hydrogel for selling Power Diabetic Wound Therapeutic and Full pores and skin regeneration. Theranostics. 2019;9:65–76.
Han S, Yang H, Ni X, Deng Y, Li Z, Xing X, Du M. Programmed launch of vascular endothelial progress issue and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol. 2023;253:126721.
Liu W, Gao R, Yang C, Feng Z, Ou-Yang W, Pan X, Huang P, Zhang C, Kong D, Wang W. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected power pores and skin wound therapeutic. Sci Adv. 2022;8:eabn7006.
Liu Ok, Chen C, Zhang H, Chen Y, Zhou S. Adipose stem cell-derived exosomes together with hyaluronic acid speed up wound therapeutic by way of enhancing re-epithelialization and vascularization. Br J Dermatol. 2019;181:854–6.
Zhang Y, Li M, Wang Y, Han F, Shen Ok, Luo L, Li Y, Jia Y, Zhang J, Cai W, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes power diabetic wound therapeutic by inhibiting mitochondrial fission. Bioact Mater. 2023;26:323–36.
Yuan M, Liu Ok, Jiang T, Li S, Chen J, Wu Z, Li W, Tan R, Wei W, Yang X, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound therapeutic. J Nanobiotechnol. 2022;20:147.
Geng X, Qi Y, Liu X, Shi Y, Li H, Zhao L. A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound therapeutic. Biomaterials Adv. 2022;133:112613.
Xiang Ok, Chen J, Guo J, Li G, Kang Y, Wang C, Jiang T, Zhang M, Jiang G, Yuan M, et al. Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound therapeutic. Mater Right now Bio. 2023;23:100863.
Xiong Y, Chen L, Liu P, Yu T, Lin C, Yan C, Hu Y, Zhou W, Solar Y, Panayi AC, et al. All-in-One: multifunctional hydrogel accelerates oxidative Diabetic Wound Therapeutic by way of timed-release of exosome and fibroblast progress issue. Small. 2022;18:2104229.
Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound therapeutic. Biomaterials. 2020;249:120020.
Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ. Unveiling the Variations of Secretome of Human Bone Marrow Mesenchymal Stem Cells, adipose tissue-derived stem cells, and human umbilical twine perivascular cells: a proteomic evaluation. Stem Cells Dev. 2016;25:1073–83.
Mennan C, Wright Ok, Bhattacharjee A, Balain B, Richardson J, Roberts S. Isolation and characterisation of mesenchymal stem cells from totally different areas of the human umbilical twine. Biomed Res Int. 2013;2013:916136.
Shang Y, Guan H, Zhou F. Organic traits of umbilical twine mesenchymal stem cells and its therapeutic potential for Hematological issues. Entrance Cell Dev Biology 2021, 9.
Zhao D, Yu Z, Li Y, Wang Y, Li Q, Han D. GelMA mixed with sustained launch of HUVECs derived exosomes for selling cutaneous wound therapeutic and facilitating pores and skin regeneration. J Mol Hist. 2020;51:251–63.
Zhang B, Wu X, Zhang X, Solar Y, Yan Y, Shi H, Zhu Y, Wu L, Pan Z, Zhu W, et al. Human umbilical twine mesenchymal stem cell exosomes Improve Angiogenesis by way of the Wnt4/β-Catenin pathway. Stem Cells Translational Drugs. 2015;4:513–22.
Henriques-Antunes H, Cardoso RMS, Zonari A, Correia J, Leal EC, Jiménez-Balsa A, Lino MM, Barradas A, Kostic I, Gomes C, et al. The kinetics of small extracellular vesicle supply impacts pores and skin tissue regeneration. ACS Nano. 2019;13:8694–707.
Tan SHS, Wong JRY, Sim SJY, Tjio CKE, Wong KL, Chew JRJ, Hui JHP, Toh WS. Mesenchymal stem cell exosomes in bone regenerative methods—a scientific evaluate of preclinical research. Mater Right now Bio. 2020;7:100067.
Yang Q, Nanayakkara GK, Drummer C, Solar Y, Johnson C, Cueto R, Fu H, Shao Y, Wang L, Yang WY, et al. Low-intensity Ultrasound-Induced anti-inflammatory results are mediated by a number of new mechanisms together with gene induction, Immunosuppressor Cell Promotion, and enhancement of Exosome Biogenesis and Docking. Entrance Physiol. 2017;8:818.
Wang Y, Cao Z, Wei Q, Ma Ok, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles launched from gelatin methacryloyl hydrogel facilitate diabetic wound therapeutic by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater. 2022;147:342–55.
Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for Cartilage Engineering and Regeneration. Tissue Eng Half B: Critiques. 2012;18:301–11.
Tao S-C, Guo S-C, Li M, Ke Q-F, Guo Y-P, Zhang C-Q. Chitosan Wound dressings incorporating exosomes derived from MicroRNA-126-Overexpressing synovium mesenchymal stem cells present sustained launch of exosomes and heal full-thickness pores and skin defects in a Diabetic Rat Mannequin. Stem Cells Translational Drugs. 2017;6:736–47.
Kwak G, Cheng J, Kim H, Music S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained exosome-guided macrophage polarization utilizing hydrolytically degradable PEG hydrogels for Cutaneous Wound Therapeutic: identification of Key proteins and MiRNAs, and sustained launch formulation. Small. 2022;18:2200060.
Xu N, Wang L, Guan J, Tang C, He N, Zhang W, Fu S. Wound therapeutic results of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat mannequin. Int J Biol Macromol. 2018;117:102–7.
Ramírez OJ, Alvarez S, Contreras-Kallens P, Barrera NP, Aguayo S, Schuh CMAP. Sort I collagen hydrogels as a supply matrix for royal jelly derived extracellular vesicles. Drug Supply. 2020;27:1308–18.
Hu N, Cai Z, Jiang X, Wang C, Tang T, Xu T, Chen H, Li X, Du X, Cui W. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and speed up diabetic wound therapeutic. Acta Biomater. 2023;157:175–86.
Li M, Ke Q-F, Tao S-C, Guo S-C, Rui B-Y, Guo Y-P. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from mir-126-3p overexpressed synovial mesenchymal stem cells for diabetic power wound therapeutic. J Mater Chem B. 2016;4:6830–41.
Portela R, Leal CR, Almeida PL, Sobral RG. Bacterial cellulose: a flexible biopolymer for wound dressing purposes. Microb Biotechnol. 2019;12:586–610.
Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for pores and skin wound therapeutic and dermal reconstruction. WIREs Nanomed Nanobiotechnol. 2010;2:510–25.
Dai N-T, Williamson MR, Khammo N, Adams EF, Coombes AGA. Composite cell help membranes primarily based on collagen and polycaprolactone for tissue engineering of pores and skin. Biomaterials. 2004;25:4263–71.
Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Nooshabadi VT, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness pores and skin wounds: an in vivo research. J Biomedical Mater Res Half A. 2020;108:545–56.
Zhu W, Dong Y, Xu P, Pan Q, Jia Ok, Jin P, Zhou M, Xu Y, Guo R, Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound therapeutic in diabetic mice. Acta Biomater. 2022;154:212–30.
Ferroni L, Gardin C, D’Amora U, Calzà L, Ronca A, Tremoli E, Ambrosio L, Zavan B. Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch enhance the regenerative properties of endothelial and dermal cells. Biomaterials Adv. 2022;139:213000.
Liu H, Wu B, Shi X, Cao Y, Zhao X, Liang D, Qin Q, Liang X, Lu W, Wang D, Liu J. Cardio exercise-induced circulating extracellular vesicle mixed decellularized dermal matrix hydrogel facilitates diabetic wound therapeutic by selling angiogenesis. Entrance Bioeng Biotechnol 2022, 10.
Zhang X, Gan J, Fan L, Luo Z, Zhao Y. Bioinspired Adaptable Indwelling Microneedles for Therapy of Diabetic Ulcers. Adv Mater. 2023;35:e2210903.
Jiang T, Liu S, Wu Z, Li Q, Ren S, Chen J, Xu X, Wang C, Lu C, Yang X, Chen Z. ADSC-exo@MMP-PEG sensible hydrogel promotes diabetic wound therapeutic by optimizing mobile capabilities and relieving oxidative stress. Mater Right now Bio 2022, 16.
Bari E, Scocozza F, Perteghella S, Sorlini M, Auricchio F, Torre ML, Conti M. 3D Bioprinted scaffolds containing mesenchymal Stem/Stromal lyosecretome: Subsequent Era Managed Launch machine for bone regenerative drugs. Pharmaceutics. 2021;13:515.
Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived Exosomes Mixed Pluronic F127 Hydrogel Promote Power Diabetic Wound Therapeutic and Full pores and skin regeneration. IJN. 2020;15:5911–26.
Antezana PE, Municoy S, Alvarez-Echazu MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, Kadumudi FB, Dolatshahi-Pirouz A, Orive G, Desimone MF. The 3D Bioprinted scaffolds for Wound Therapeutic. Pharmaceutics 2022, 14.
Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically correct bone grafts. Tissue Eng Half A. 2021;27:1168–81.
Varaprasad Ok, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite supplies for wound dressing software:a mini evaluate. Carbohydr Polym. 2020;236:116025.
Mndlovu H, du Toit LC, Kumar P, Marimuthu T, Kondiah PPD, Choonara YE, Pillay V. Growth of a fluid-absorptive alginate-chitosan bioplatform for potential software as a wound dressing. Carbohydr Polym. 2019;222:114988.
Zhou J, Du X, Chen X, Xu B. Adaptive multifunctional supramolecular assemblies of Glycopeptides quickly allow morphogenesis. Biochemistry. 2018;57:4867–79.
Bai XP, Zheng HX, Fang R, Wang TR, Hou XL, Li Y, Chen XB, Tian WM. Fabrication of engineered coronary heart tissue grafts from alginate/collagen barium composite microbeads. Biomed Mater. 2011;6:045002.
Cui B, Zhang C, Gan B, Liu W, Liang J, Fan Z, Wen Y, Yang Y, Peng X, Zhou Y. Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote pores and skin wound restore in rats. Mater Sci Eng C Mater Biol Appl. 2020;109:110611.
Chen XB, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma NK, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511–36.
Masri S, Zawani M, Zulkiflee I, Salleh A, Fadilah NIM, Maarof M, Wen APY, Duman F, Tabata Y, Aziz IA et al. Mobile Interplay of Human pores and skin cells in the direction of pure bioink by way of 3D-Bioprinting applied sciences for Power Wound: a Complete Evaluation. Int J Mol Sci 2022, 23.
Lazaridou M, Bikiaris DN, Lamprou DA. 3D Bioprinted Chitosan-based hydrogel scaffolds in tissue Engineering and Localised Drug Supply. Pharmaceutics; 2022. p. 14.
Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Antibacterial adhesive injectable hydrogels with fast self-healing, extensibility and compressibility as wound dressing for joints pores and skin wound therapeutic. Biomaterials. 2018;183:185–99.
Qiao Z, Lv X, He S, Bai S, Liu X, Hou L, He J, Tong D, Ruan R, Zhang J, et al. A mussel-inspired supramolecular hydrogel with sturdy tissue anchor for fast hemostasis of arterial and visceral bleedings. Bioact Mater. 2021;6:2829–40.
Endo Y, Yoshida H, Ota Y, Akazawa Y, Sayo T, Hanai U, Imagawa Ok, Sasaki M, Takahashi Y. Accelerated human epidermal turnover pushed by elevated hyaluronan manufacturing. J Dermatol Sci. 2021;101:123–33.
Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L, Wu S. Chitosan-based practical supplies for pores and skin wound restore: mechanisms and purposes. Entrance Bioeng Biotechnol. 2021;9:650598.
Maiz-Fernandez S, Barroso N, Perez-Alvarez L, Silvan U, Vilas-Vilela JL, Lanceros-Mendez S. 3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug launch functionality. Int J Biol Macromol. 2021;188:820–32.
Coskun S, Akbulut SO, Sarikaya B, Cakmak S, Gumusderelioglu M. Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters. Int J Biol Macromol. 2022;222:1453–64.
Ahmed J, Gultekinoglu M, Edirisinghe M. Bacterial cellulose micro-nano fibres for wound therapeutic purposes. Biotechnol Adv. 2020;41:107549.
Hickey RJ, Pelling AE. Cellulose biomaterials for tissue Engineering. Entrance Bioeng Biotechnol. 2019;7:45.
Alven S, Aderibigbe BA. Chitosan and Cellulose-based hydrogels for Wound Administration. Int J Mol Sci 2020, 21.
Wang X, Wang Q, Xu C. Nanocellulose-based inks for 3D bioprinting: key facets in Analysis Growth and Difficult views in Purposes-A Mini Evaluation. Bioeng (Basel) 2020, 7.
Chouhan D, Mandal BB. Silk biomaterials in wound therapeutic and pores and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 2020;103:24–51.
Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of Silk Fibroin Use in Wound Dressings. Tendencies Biotechnol. 2018;36:907–22.
Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC. Silk fibroin for pores and skin damage restore: the place do issues stand? Adv Drug Deliv Rev. 2020;153:28–53.
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–70.
Kim E, Seok JM, Bae SB, Park SA, Park WH. Silk Fibroin enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for light-based three-Dimensional Bioprinting. Biomacromolecules. 2021;22:1921–31.
Netti F, Aviv M, Dan Y, Rudnick-Glick S, Halperin-Sternfeld M, Adler-Abramovich L. Stabilizing gelatin-based bioinks underneath physiological circumstances by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. Nanoscale. 2022;14:8525–33.
Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The position of microfluidics and 3D-bioprinting in the way forward for exosome remedy. Tendencies Biotechnol. 2023;41:1343–59.
Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an summary. Biomater Sci. 2018;6:915–46.
Nuutila Ok, Samandari M, Endo Y, Zhang Y, Quint J, Schmidt TA, Tamayol A, Sinha I. In vivo printing of progress factor-eluting adhesive scaffolds improves wound therapeutic. Bioact Mater. 2022;8:296–308.
Xu Y, Xu C, He L, Zhou J, Chen T, Ouyang L, Guo X, Qu Y, Luo Z, Duan D. Stratified-structural hydrogel integrated with magnesium-ion-modified black phosphorus nanosheets for selling neuro-vascularized bone regeneration. Bioact Mater. 2022;16:271–84.
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: redefining its position. Cells 2020, 9.
Rajaram A, Schreyer DJ, Chen DX. Use of the polycation polyethyleneimine to enhance the bodily properties of alginate-hyaluronic acid hydrogel throughout fabrication of tissue restore scaffolds. J Biomater Sci Polym Ed. 2015;26:433–45.
Little CJ, Kulyk WM, Chen X. The Impact of Chondroitin Sulphate and Hyaluronic Acid on chondrocytes cultured inside a fibrin-alginate hydrogel. J Funct Biomater. 2014;5:197–210.
Li C, Zheng Z, Jia J, Zhang W, Qin L, Zhang W, Lai Y. Preparation and characterization of photocurable composite extracellular matrix-methacrylated hyaluronic acid bioink. J Mater Chem B. 2022;10:4242–53.
Jorgensen AM, Chou Z, Gillispie G, Lee SJ, Yoo JJ, Soker S, Atala A. Decellularized pores and skin extracellular matrix (dsECM) improves the Bodily and Organic Properties of Fibrinogen Hydrogel for pores and skin bioprinting purposes. Nanomaterials (Basel) 2020, 10.
Debels H, Hamdi M, Abberton Ok, Morrison W. Dermal matrices and bioengineered pores and skin substitutes: a vital evaluate of present choices. Plast Reconstr Surg Glob Open. 2015;3:e284.
Jang KS, Park SJ, Choi JJ, Kim HN, Shim KM, Kim MJ, Jang IH, Jin SW, Kang SS, Kim SE, Moon SH. Therapeutic efficacy of Synthetic pores and skin produced by 3D bioprinting. Mater (Basel) 2021, 14.
Dzobo Ok, Motaung Ok, Adesida A. Latest developments in Decellularized Extracellular Matrix Bioinks for 3D Printing: an up to date evaluate. Int J Mol Sci 2019, 20.
Han Z, Dong L, Li A, Li Z, Fu L, Zhang Z, Li X, Li X. Environment friendly angiogenesis-based wound therapeutic by way of hydrogel dressing with extracellular vesicles launch. Mater Right now Bio. 2022;16:100427.
Nooshabadi VT, Khanmohamadi M, Valipour E, Mahdipour S, Salati A, Malekshahi ZV, Shafei S, Amini E, Farzamfar S, Ai J. Affect of exosome-loaded chitosan hydrogel in wound restore and layered dermal reconstitution in mice animal mannequin. J Biomedical Mater Res Half A. 2020;108:2138–49.
Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, et al. Environment friendly angiogenesis-based Diabetic Wound Therapeutic/Pores and skin Reconstruction by way of Bioactive Antibacterial Adhesive Ultraviolet shielding nanodressing with Exosome Launch. ACS Nano. 2019;13:10279–93.
Wang C, Liang C, Wang R, Yao X, Guo P, Yuan W, Liu Y, Music Y, Li Z, Xie X. The fabrication of a extremely environment friendly self-healing hydrogel from pure biopolymers loaded with exosomes for the synergistic promotion of extreme wound therapeutic. Biomater Sci. 2019;8:313–24.
Zhou Y, Zhang X-L, Lu S-T, Zhang N-Y, Zhang H-J, Zhang J, Zhang J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound therapeutic and regeneration. Stem Cell Res Ther. 2022;13:407.
Bar A, Kryukov O, Etzion S, Cohen S. Engineered extracellular vesicle-mediated supply of miR-199a-3p will increase the viability of 3D-printed cardiac patches. Int J Bioprinting. 2023;9:670.
Bari E, Gravina GM, Scocozza F, Perteghella S, Frongia B, Tengattini S, Segale L, Torre ML, Conti M. Silk Fibroin Bioink for 3D Printing in tissue regeneration: managed launch of MSC extracellular vesicles. Pharmaceutics 2023, 15.
Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. Respiration-in/breathing-out method to making ready nanosilver-loaded hydrogels: extremely environment friendly antibacterial nanocomposites. J Appl Polym Sci. 2009;111:934–44.
Tang L, Zhao C, Liu Y, Zhou J, Dong Y, Huang J, Yang T, Xiao H, Liu D, Wang S, Cai H. GelMA Hydrogel loaded with extracellular vesicles derived from umbilical twine mesenchymal stem cells for selling Cutaneous Diabetic Wound Therapeutic. ACS Omega. 2023;8:10030–9.
Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A. Useful Human Vascular Community Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv Funct Mater. 2012;22:2027–39.
Xu L, Liu Y, Tang L, Xiao H, Yang Z, Wang S. Preparation of recombinant human collagen III protein hydrogels with sustained launch of Extracellular vesicles for pores and skin Wound Therapeutic. Int J Mol Sci. 2022;23:6289.
Shitrit Y, Davidovich-Pinhas M, Bianco-Peled H. Shear thinning pectin hydrogels bodily cross-linked with chitosan nanogels. Carbohydr Polym. 2019;225:115249.
Palmara G, Frascella F, Roppolo I, Chiappone A, Chiado A. Useful 3D printing: approaches and bioapplications. Biosens Bioelectron. 2021;175:112849.
Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of Microenvironment-Particular Bioinspired and Exosome-Strengthened Hydrogel scaffolds for environment friendly cartilage and subchondral bone regeneration. Adv Sci (Weinh). 2023;10:e2303650.
Huang J, Yang R, Jiao J, Li Z, Wang P, Liu Y, Li S, Chen C, Li Z, Qu G, et al. A click on chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound therapeutic. Nat Commun. 2023;14:7856.
Lee J, Dutta SD, Acharya R, Park H, Kim H, Randhawa A, Patil TV, Ganguly Ok, Luthfikasari R, Lim KT. Stimuli-responsive 3D printable conductive hydrogel: a step towards regulating macrophage polarization and Wound Therapeutic. Adv Healthc Mater 2023:e2302394.
Kim BS, Kwon YW, Kong J-S, Park GT, Gao G, Han W, Kim M-B, Lee H, Kim JH, Cho D-W. 3D cell printing of in vitro stabilized pores and skin mannequin and in vivo pre-vascularized pores and skin patch utilizing tissue-specific extracellular matrix bioink: a step in the direction of superior pores and skin tissue engineering. Biomaterials. 2018;168:38–53.
Zhong Y, Ma H, Lu Y, Cao L, Cheng YY, Tang X, Solar H, Music Ok. Investigation on repairing diabetic foot ulcer primarily based on 3D bio-printing Gel/dECM/Qcs composite scaffolds. Tissue Cell. 2023;85:102213.
Born LJ, McLoughlin ST, Dutta D, Mahadik B, Jia X, Fisher JP, Jay SM. Sustained launched of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-printed gelatin methacrylate hydrogels. J Biomed Mater Res A. 2022;110:1190–8.
Su N, Hao Y, Wang F, Hou W, Chen H, Luo Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses towards tissue restore. Sci Adv 2021, 7.
Altabas V. Diabetes, Endothelial Dysfunction, and Vascular Restore: What Ought to a Diabetologist Maintain His Eye on? Int J Endocrinol 2015, 2015:848272.
Telgenhoff D, Shroot B. Mobile senescence mechanisms in power wound therapeutic. Cell Loss of life Differ. 2005;12:695–8.
Wall IB, Moseley R, Baird DM, Kipling D, Giles P, Laffafian I, Worth PE, Thomas DW, Stephens P. Fibroblast dysfunction is a key issue within the non-healing of power venous Leg Ulcers. J Make investments Dermatol. 2008;128:2526–40.
Tsourdi E, Barthel A, Rietzsch H, Reichel A, Bornstein SR. Present facets within the pathophysiology and remedy of power wounds in diabetes mellitus. Biomed Res Int. 2013;2013:385641.
Xue M, Jackson CJ. Extracellular matrix reorganization throughout Wound Therapeutic and its influence on irregular scarring. Adv Wound Care. 2015;4:119–36.
Wang Y, Music P, Wu L, Su Z, Gui X, Gao C, Zhao H, Wang Y, Li Z, Cen Y, et al. In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound therapeutic. J Mater Chem B. 2023;11:837–51.
Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Present and upcoming therapies to modulate pores and skin scarring and fibrosis. Adv Drug Deliv Rev. 2019;146:37–59.
Shen Y, Xu G, Huang H, Wang Ok, Wang H, Lang M, Gao H, Zhao S. Sequential launch of small extracellular vesicles from Bilayered Thiolated Alginate/Polyethylene Glycol Diacrylate Hydrogels for Scarless Wound Therapeutic. ACS Nano. 2021;15:6352–68.
Kim SY, Nair MG. Macrophages in wound therapeutic: activation and plasticity. Immunol Cell Biol. 2019;97:258–67.
Barbay V, Houssari M, Mekki M, Banquet S, Edwards-Levy F, Henry JP, Dumesnil A, Adriouch S, Thuillez C, Richard V, Brakenhielm E. Function of M2-like macrophage recruitment throughout angiogenic progress issue remedy. Angiogenesis. 2015;18:191–200.
Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b + macrophages are important for efficient pores and skin Wound Therapeutic. J Make investments Dermatol. 2016;136:1885–91.
Schilling JA. Wound therapeutic. Surg Clin North Am. 1976;56:859–74.
Ji S, Zhu Z, Solar X, Fu X. Useful hair follicle regeneration: an up to date evaluate. Sig Transduct Goal Ther. 2021;6:1–11.
Huang C, Du Y, Nabzdyk CS, Ogawa R, Koyama T, Orgill DP, Fu X. Regeneration of hair and different pores and skin appendages: a microenvironment-centric view. Wound Restore and Regeneration. 2016;24:759–66.
Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Li J, Gan LH. Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Supply. Small. 2011;7:1569–78.
Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P. Elevated mir-124-3p in microglial exosomes following traumatic mind damage inhibits neuronal irritation and contributes to neurite outgrowth by way of their switch into neurons. FASEB J. 2018;32:512–28.
Qian Z, Bai Y, Zhou J, Li L, Na J, Fan Y, Guo X, Liu H. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing contaminated wounds. J Mater Chem B. 2020;8:7197–212.
Pop-Busui R, Ang L, Holmes C, Gallagher Ok, Feldman EL. Irritation as a therapeutic goal for Diabetic neuropathies. Curr Diab Rep. 2016;16:29.
Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug supply purposes. Adv Drug Deliv Rev. 2021;174:348–68.
Gandham S, Su X, Wooden J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Applied sciences and standardization in Analysis on Extracellular vesicles. Tendencies Biotechnol. 2020;38:1066–98.
Gorgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, et al. Identification of storage circumstances stabilizing extracellular vesicles preparations. J Extracell Vesicles. 2022;11:e12238.
Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Therapeutic Purposes. Polymers 2020, 12.
Bakaic E, Smeets NMB, Hoare T. Injectable hydrogels primarily based on poly(ethylene glycol) and derivatives as practical biomaterials. RSC Adv. 2015;5:35469–86.
Yue Ok, Santiago GT-d, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical purposes of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.
Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Solar B, Zhu W, Chen S. Photopolymerizable Biomaterials and Gentle-based 3D Printing Methods for Biomedical Purposes. Chem Rev. 2020;120:10695–743.
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.
Blaeser A, Campos DFD, Puster U, Richtering W, Stevens MM, Fischer H. Controlling Shear stress in 3D bioprinting is a key issue to Stability Printing Decision and Stem Cell Integrity. Adv Healthc Mater. 2016;5:326–33.
Placone JK, Engler AJ. Latest advances in extrusion-based 3D Printing for Biomedical Purposes. Adv Healthc Mater. 2018;7:1701161.
Jin Z, Zhang Z, Shao X, Gu GX. Monitoring anomalies in 3D bioprinting with deep neural networks. ACS Biomater Sci Eng. 2023;9:3945–52.
Lee J, Oh SJ, An SH, Kim WD, Kim SH. Machine learning-based design technique for 3D printable bioink: elastic modulus and yield stress decide printability. Biofabrication. 2020;12:035018.