[HTML payload içeriği buraya]
26.9 C
Jakarta
Sunday, November 24, 2024

Hydrogel-mediated extracellular vesicles for enhanced wound therapeutic: the newest progress, and their prospects for 3D bioprinting | Journal of Nanobiotechnology


  • Canedo-Dorantes L, Canedo-Ayala M. Pores and skin Acute Wound Therapeutic: A Complete Evaluation. Int J Inflam 2019, 2019:3706315.

  • Raziyeva Ok, Kim Y, Zharkinbekov Z, Kassymbek Ok, Jimi S, Saparov A. Immunology of Acute and Power Wound Therapeutic. Biomolecules 2021, 11.

  • Kuraitis D, Rosenthal N, Boh E, McBurney E. Macrophages in dermatology: pathogenic roles and focused therapeutics. Arch Dermatol Res. 2022;314:133–40.

    Article 
    PubMed 

    Google Scholar
     

  • Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: Primary Science, present therapies, and future instructions. Adv Wound Care (New Rochelle). 2018;7:29–45.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao R, Liang H, Clarke E, Jackson C, Xue M. Irritation in power wounds. Int J Mol Sci 2016, 17.

  • Han G, Ceilley R. Power Wound Therapeutic: a evaluate of present administration and coverings. Adv Ther. 2017;34:599–610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heras KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Power wounds: present standing, accessible methods and rising therapeutic options. J Managed Launch. 2020;328:532–50.

    Article 

    Google Scholar
     

  • Shi Y, Wang S, Zhang W, Zhu Y, Fan Z, Huang Y, Li F, Yang R. Bone marrow mesenchymal stem cells facilitate diabetic wound therapeutic by way of the restoration of epidermal cell autophagy by way of the HIF-1α/TGF-β1/SMAD pathway. Stem Cell Res Ther. 2022;13:314.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Domestically administered adipose-derived stem cells speed up wound therapeutic by way of differentiation and vasculogenesis. Cell Transpl. 2011;20:205–16.

    Article 

    Google Scholar
     

  • Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE. Mesenchymal stem cells overexpressing akt dramatically restore infarcted myocardium and enhance cardiac perform regardless of rare mobile fusion or differentiation. Mol Ther. 2006;14:840–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu J, Ludlow JW. Cell-based therapeutic merchandise: efficiency assay improvement and software. Regen Med. 2014;9:497–512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: rising frontiers in wound therapeutic. Med Res Rev. 2022;42:2102–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niel G, D’Angelo G, Raposo G. Shedding gentle on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng M, Huang M, Ma X, Chen H, Gao X. Harnessing exosomes for the event of Mind Drug Supply methods. Bioconjug Chem. 2019;30:994–1005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD. Exosome uptake by way of clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 supply. J Biol Chem. 2014;289:22258–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi BS, Beer MA, Giepmans BNG, Zuhorn IS. Endocytosis of Extracellular vesicles and launch of their Cargo from endosomes. ACS Nano. 2020;14:4444–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M, Waldman D, Leider-Trejo L, et al. Donor-derived mind tumor following neural stem cell transplantation in an ataxia telangiectasia affected person. PLoS Med. 2009;6:e1000029.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y. Exosomes launched from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound therapeutic by selling collagen synthesis and angiogenesis. J Transl Med. 2015;13:49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK. Mesenchymal stem cells secrete immunologically lively exosomes. Stem Cells Dev. 2014;23:1233–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Fang F, Solar M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: an rising paradigm for regenerative drugs. Theranostics. 2022;12:4879–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D’Angelo G, Andaloussi SE, Goetz JG, Gross JC, Hyenne V, et al. The facility of imaging to know extracellular vesicle biology in vivo. Nat Strategies. 2021;18:1013–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lázaro-Ibáñez E, Faruqu FN, Saleh AF, Silva AM, Wang JT-W, Rak J, Al-Jamal KT, Dekker N. Choice of fluorescent, bioluminescent, and Radioactive tracers to precisely mirror extracellular vesicle biodistribution in vivo. ACS Nano. 2021;15:3212–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular vesicles. Adv Healthc Mater. 2022;11:2100538.

    Article 
    CAS 

    Google Scholar
     

  • Stephanopoulos N, Ortony JH, Stupp SI. Self-assembly for the synthesis of practical biomaterials. Acta Mater. 2013;61:912–30.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. twenty fifth anniversary article: Rational Design and Purposes of hydrogels in Regenerative Drugs. Adv Mater. 2014;26:85–124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: a brand new cell-free therapeutic method for pores and skin regeneration. Eur J Pharm Biopharm. 2022;171:50–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy SV, Coppi P, Atala A. Alternatives and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4:370–80.

    Article 
    PubMed 

    Google Scholar
     

  • Yan W-C, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JYH, Robinson KS, Wang C-H. 3D bioprinting of pores and skin tissue: from pre-processing to remaining product analysis. Adv Drug Deliv Rev. 2018;132:270–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WICHTERLE O. LÍM D: Hydrophilic gels for Organic Use | Nature. Nature, 185:117–8.

  • Li J, Mooney DJ. Designing hydrogels for managed drug supply. Nat Rev Mater. 2016;1:1–17.

    Article 
    ADS 

    Google Scholar
     

  • Xu Y, Chen H, Fang Y, Wu J. Hydrogel Mixed with Phototherapy in Wound Therapeutic. Adv Healthc Mater. 2022;11:2200494.

    Article 
    CAS 

    Google Scholar
     

  • Ma S, Hu H, Wu J, Li X, Ma X, Zhao Z, Liu Z, Wu C, Zhao B, Wang Y, Jing W. Useful extracellular matrix hydrogel modified with MSC-derived small extracellular vesicles for power wound therapeutic. Cell Prolif. 2022;55:13196.

    Article 

    Google Scholar
     

  • Su J, Hu B-H, Lowe WL, Kaufman DB, Messersmith PB. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials. 2010;31:308–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mardpour S, Ghanian MH, Sadeghi-abandansari H, Mardpour S, Nazari A, Shekari F, Baharvand H. Hydrogel-mediated sustained systemic supply of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in Power Liver failure. ACS Appl Mater Interfaces. 2019;11:37421–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Ok, He C, Wu Y, Zhou X, Liu P, Tang W, Yu M, Tian W. Preservation of small extracellular vesicle in gelatin methacryloyl hydrogel by way of lowered particles aggregation for therapeutic purposes. IJN. 2021;16:7831–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar M, Li Q, Yu H, Cheng J, Wu N, Shi W, Zhao F, Shao Z, Meng Q, Chen H, et al. Cryo-self-assembled silk fibroin sponge as a biodegradable platform for enzyme-responsive supply of exosomes. Bioactive Mater. 2022;8:505–14.

    Article 
    CAS 

    Google Scholar
     

  • W CWM, X T, Z X, L C, G W, X H. Engineering Bioactive Self-Therapeutic Antibacterial exosomes Hydrogel for selling Power Diabetic Wound Therapeutic and Full pores and skin regeneration. Theranostics. 2019;9:65–76.

    Article 

    Google Scholar
     

  • Han S, Yang H, Ni X, Deng Y, Li Z, Xing X, Du M. Programmed launch of vascular endothelial progress issue and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol. 2023;253:126721.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Gao R, Yang C, Feng Z, Ou-Yang W, Pan X, Huang P, Zhang C, Kong D, Wang W. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected power pores and skin wound therapeutic. Sci Adv. 2022;8:eabn7006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Ok, Chen C, Zhang H, Chen Y, Zhou S. Adipose stem cell-derived exosomes together with hyaluronic acid speed up wound therapeutic by way of enhancing re-epithelialization and vascularization. Br J Dermatol. 2019;181:854–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Li M, Wang Y, Han F, Shen Ok, Luo L, Li Y, Jia Y, Zhang J, Cai W, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes power diabetic wound therapeutic by inhibiting mitochondrial fission. Bioact Mater. 2023;26:323–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan M, Liu Ok, Jiang T, Li S, Chen J, Wu Z, Li W, Tan R, Wei W, Yang X, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound therapeutic. J Nanobiotechnol. 2022;20:147.

    Article 
    CAS 

    Google Scholar
     

  • Geng X, Qi Y, Liu X, Shi Y, Li H, Zhao L. A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound therapeutic. Biomaterials Adv. 2022;133:112613.

    Article 

    Google Scholar
     

  • Xiang Ok, Chen J, Guo J, Li G, Kang Y, Wang C, Jiang T, Zhang M, Jiang G, Yuan M, et al. Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound therapeutic. Mater Right now Bio. 2023;23:100863.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong Y, Chen L, Liu P, Yu T, Lin C, Yan C, Hu Y, Zhou W, Solar Y, Panayi AC, et al. All-in-One: multifunctional hydrogel accelerates oxidative Diabetic Wound Therapeutic by way of timed-release of exosome and fibroblast progress issue. Small. 2022;18:2104229.

    Article 
    CAS 

    Google Scholar
     

  • Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound therapeutic. Biomaterials. 2020;249:120020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ. Unveiling the Variations of Secretome of Human Bone Marrow Mesenchymal Stem Cells, adipose tissue-derived stem cells, and human umbilical twine perivascular cells: a proteomic evaluation. Stem Cells Dev. 2016;25:1073–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mennan C, Wright Ok, Bhattacharjee A, Balain B, Richardson J, Roberts S. Isolation and characterisation of mesenchymal stem cells from totally different areas of the human umbilical twine. Biomed Res Int. 2013;2013:916136.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang Y, Guan H, Zhou F. Organic traits of umbilical twine mesenchymal stem cells and its therapeutic potential for Hematological issues. Entrance Cell Dev Biology 2021, 9.

  • Zhao D, Yu Z, Li Y, Wang Y, Li Q, Han D. GelMA mixed with sustained launch of HUVECs derived exosomes for selling cutaneous wound therapeutic and facilitating pores and skin regeneration. J Mol Hist. 2020;51:251–63.

    Article 
    CAS 

    Google Scholar
     

  • Zhang B, Wu X, Zhang X, Solar Y, Yan Y, Shi H, Zhu Y, Wu L, Pan Z, Zhu W, et al. Human umbilical twine mesenchymal stem cell exosomes Improve Angiogenesis by way of the Wnt4/β-Catenin pathway. Stem Cells Translational Drugs. 2015;4:513–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriques-Antunes H, Cardoso RMS, Zonari A, Correia J, Leal EC, Jiménez-Balsa A, Lino MM, Barradas A, Kostic I, Gomes C, et al. The kinetics of small extracellular vesicle supply impacts pores and skin tissue regeneration. ACS Nano. 2019;13:8694–707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan SHS, Wong JRY, Sim SJY, Tjio CKE, Wong KL, Chew JRJ, Hui JHP, Toh WS. Mesenchymal stem cell exosomes in bone regenerative methods—a scientific evaluate of preclinical research. Mater Right now Bio. 2020;7:100067.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Nanayakkara GK, Drummer C, Solar Y, Johnson C, Cueto R, Fu H, Shao Y, Wang L, Yang WY, et al. Low-intensity Ultrasound-Induced anti-inflammatory results are mediated by a number of new mechanisms together with gene induction, Immunosuppressor Cell Promotion, and enhancement of Exosome Biogenesis and Docking. Entrance Physiol. 2017;8:818.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Cao Z, Wei Q, Ma Ok, Hu W, Huang Q, Su J, Li H, Zhang C, Fu X. VH298-loaded extracellular vesicles launched from gelatin methacryloyl hydrogel facilitate diabetic wound therapeutic by HIF-1α-mediated enhancement of angiogenesis. Acta Biomater. 2022;147:342–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for Cartilage Engineering and Regeneration. Tissue Eng Half B: Critiques. 2012;18:301–11.

    Article 
    CAS 

    Google Scholar
     

  • Tao S-C, Guo S-C, Li M, Ke Q-F, Guo Y-P, Zhang C-Q. Chitosan Wound dressings incorporating exosomes derived from MicroRNA-126-Overexpressing synovium mesenchymal stem cells present sustained launch of exosomes and heal full-thickness pores and skin defects in a Diabetic Rat Mannequin. Stem Cells Translational Drugs. 2017;6:736–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwak G, Cheng J, Kim H, Music S, Lee SJ, Yang Y, Jeong JH, Lee JE, Messersmith PB, Kim SH. Sustained exosome-guided macrophage polarization utilizing hydrolytically degradable PEG hydrogels for Cutaneous Wound Therapeutic: identification of Key proteins and MiRNAs, and sustained launch formulation. Small. 2022;18:2200060.

    Article 
    CAS 

    Google Scholar
     

  • Xu N, Wang L, Guan J, Tang C, He N, Zhang W, Fu S. Wound therapeutic results of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat mannequin. Int J Biol Macromol. 2018;117:102–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramírez OJ, Alvarez S, Contreras-Kallens P, Barrera NP, Aguayo S, Schuh CMAP. Sort I collagen hydrogels as a supply matrix for royal jelly derived extracellular vesicles. Drug Supply. 2020;27:1308–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu N, Cai Z, Jiang X, Wang C, Tang T, Xu T, Chen H, Li X, Du X, Cui W. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and speed up diabetic wound therapeutic. Acta Biomater. 2023;157:175–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Ke Q-F, Tao S-C, Guo S-C, Rui B-Y, Guo Y-P. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from mir-126-3p overexpressed synovial mesenchymal stem cells for diabetic power wound therapeutic. J Mater Chem B. 2016;4:6830–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portela R, Leal CR, Almeida PL, Sobral RG. Bacterial cellulose: a flexible biopolymer for wound dressing purposes. Microb Biotechnol. 2019;12:586–610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for pores and skin wound therapeutic and dermal reconstruction. WIREs Nanomed Nanobiotechnol. 2010;2:510–25.

    Article 
    CAS 

    Google Scholar
     

  • Dai N-T, Williamson MR, Khammo N, Adams EF, Coombes AGA. Composite cell help membranes primarily based on collagen and polycaprolactone for tissue engineering of pores and skin. Biomaterials. 2004;25:4263–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Nooshabadi VT, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness pores and skin wounds: an in vivo research. J Biomedical Mater Res Half A. 2020;108:545–56.

    Article 
    CAS 

    Google Scholar
     

  • Zhu W, Dong Y, Xu P, Pan Q, Jia Ok, Jin P, Zhou M, Xu Y, Guo R, Cheng B. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound therapeutic in diabetic mice. Acta Biomater. 2022;154:212–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferroni L, Gardin C, D’Amora U, Calzà L, Ronca A, Tremoli E, Ambrosio L, Zavan B. Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch enhance the regenerative properties of endothelial and dermal cells. Biomaterials Adv. 2022;139:213000.

    Article 
    CAS 

    Google Scholar
     

  • Liu H, Wu B, Shi X, Cao Y, Zhao X, Liang D, Qin Q, Liang X, Lu W, Wang D, Liu J. Cardio exercise-induced circulating extracellular vesicle mixed decellularized dermal matrix hydrogel facilitates diabetic wound therapeutic by selling angiogenesis. Entrance Bioeng Biotechnol 2022, 10.

  • Zhang X, Gan J, Fan L, Luo Z, Zhao Y. Bioinspired Adaptable Indwelling Microneedles for Therapy of Diabetic Ulcers. Adv Mater. 2023;35:e2210903.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang T, Liu S, Wu Z, Li Q, Ren S, Chen J, Xu X, Wang C, Lu C, Yang X, Chen Z. ADSC-exo@MMP-PEG sensible hydrogel promotes diabetic wound therapeutic by optimizing mobile capabilities and relieving oxidative stress. Mater Right now Bio 2022, 16.

  • Bari E, Scocozza F, Perteghella S, Sorlini M, Auricchio F, Torre ML, Conti M. 3D Bioprinted scaffolds containing mesenchymal Stem/Stromal lyosecretome: Subsequent Era Managed Launch machine for bone regenerative drugs. Pharmaceutics. 2021;13:515.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived Exosomes Mixed Pluronic F127 Hydrogel Promote Power Diabetic Wound Therapeutic and Full pores and skin regeneration. IJN. 2020;15:5911–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antezana PE, Municoy S, Alvarez-Echazu MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, Kadumudi FB, Dolatshahi-Pirouz A, Orive G, Desimone MF. The 3D Bioprinted scaffolds for Wound Therapeutic. Pharmaceutics 2022, 14.

  • Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically correct bone grafts. Tissue Eng Half A. 2021;27:1168–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varaprasad Ok, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite supplies for wound dressing software:a mini evaluate. Carbohydr Polym. 2020;236:116025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mndlovu H, du Toit LC, Kumar P, Marimuthu T, Kondiah PPD, Choonara YE, Pillay V. Growth of a fluid-absorptive alginate-chitosan bioplatform for potential software as a wound dressing. Carbohydr Polym. 2019;222:114988.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Du X, Chen X, Xu B. Adaptive multifunctional supramolecular assemblies of Glycopeptides quickly allow morphogenesis. Biochemistry. 2018;57:4867–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai XP, Zheng HX, Fang R, Wang TR, Hou XL, Li Y, Chen XB, Tian WM. Fabrication of engineered coronary heart tissue grafts from alginate/collagen barium composite microbeads. Biomed Mater. 2011;6:045002.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui B, Zhang C, Gan B, Liu W, Liang J, Fan Z, Wen Y, Yang Y, Peng X, Zhou Y. Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote pores and skin wound restore in rats. Mater Sci Eng C Mater Biol Appl. 2020;109:110611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen XB, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma NK, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masri S, Zawani M, Zulkiflee I, Salleh A, Fadilah NIM, Maarof M, Wen APY, Duman F, Tabata Y, Aziz IA et al. Mobile Interplay of Human pores and skin cells in the direction of pure bioink by way of 3D-Bioprinting applied sciences for Power Wound: a Complete Evaluation. Int J Mol Sci 2022, 23.

  • Lazaridou M, Bikiaris DN, Lamprou DA. 3D Bioprinted Chitosan-based hydrogel scaffolds in tissue Engineering and Localised Drug Supply. Pharmaceutics; 2022. p. 14.

  • Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Antibacterial adhesive injectable hydrogels with fast self-healing, extensibility and compressibility as wound dressing for joints pores and skin wound therapeutic. Biomaterials. 2018;183:185–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao Z, Lv X, He S, Bai S, Liu X, Hou L, He J, Tong D, Ruan R, Zhang J, et al. A mussel-inspired supramolecular hydrogel with sturdy tissue anchor for fast hemostasis of arterial and visceral bleedings. Bioact Mater. 2021;6:2829–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo Y, Yoshida H, Ota Y, Akazawa Y, Sayo T, Hanai U, Imagawa Ok, Sasaki M, Takahashi Y. Accelerated human epidermal turnover pushed by elevated hyaluronan manufacturing. J Dermatol Sci. 2021;101:123–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L, Wu S. Chitosan-based practical supplies for pores and skin wound restore: mechanisms and purposes. Entrance Bioeng Biotechnol. 2021;9:650598.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maiz-Fernandez S, Barroso N, Perez-Alvarez L, Silvan U, Vilas-Vilela JL, Lanceros-Mendez S. 3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug launch functionality. Int J Biol Macromol. 2021;188:820–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coskun S, Akbulut SO, Sarikaya B, Cakmak S, Gumusderelioglu M. Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters. Int J Biol Macromol. 2022;222:1453–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed J, Gultekinoglu M, Edirisinghe M. Bacterial cellulose micro-nano fibres for wound therapeutic purposes. Biotechnol Adv. 2020;41:107549.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hickey RJ, Pelling AE. Cellulose biomaterials for tissue Engineering. Entrance Bioeng Biotechnol. 2019;7:45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alven S, Aderibigbe BA. Chitosan and Cellulose-based hydrogels for Wound Administration. Int J Mol Sci 2020, 21.

  • Wang X, Wang Q, Xu C. Nanocellulose-based inks for 3D bioprinting: key facets in Analysis Growth and Difficult views in Purposes-A Mini Evaluation. Bioeng (Basel) 2020, 7.

  • Chouhan D, Mandal BB. Silk biomaterials in wound therapeutic and pores and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 2020;103:24–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of Silk Fibroin Use in Wound Dressings. Tendencies Biotechnol. 2018;36:907–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC. Silk fibroin for pores and skin damage restore: the place do issues stand? Adv Drug Deliv Rev. 2020;153:28–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim E, Seok JM, Bae SB, Park SA, Park WH. Silk Fibroin enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for light-based three-Dimensional Bioprinting. Biomacromolecules. 2021;22:1921–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Netti F, Aviv M, Dan Y, Rudnick-Glick S, Halperin-Sternfeld M, Adler-Abramovich L. Stabilizing gelatin-based bioinks underneath physiological circumstances by incorporation of ethylene-glycol-conjugated Fmoc-FF peptides. Nanoscale. 2022;14:8525–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The position of microfluidics and 3D-bioprinting in the way forward for exosome remedy. Tendencies Biotechnol. 2023;41:1343–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an summary. Biomater Sci. 2018;6:915–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuutila Ok, Samandari M, Endo Y, Zhang Y, Quint J, Schmidt TA, Tamayol A, Sinha I. In vivo printing of progress factor-eluting adhesive scaffolds improves wound therapeutic. Bioact Mater. 2022;8:296–308.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Xu C, He L, Zhou J, Chen T, Ouyang L, Guo X, Qu Y, Luo Z, Duan D. Stratified-structural hydrogel integrated with magnesium-ion-modified black phosphorus nanosheets for selling neuro-vascularized bone regeneration. Bioact Mater. 2022;16:271–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: redefining its position. Cells 2020, 9.

  • Rajaram A, Schreyer DJ, Chen DX. Use of the polycation polyethyleneimine to enhance the bodily properties of alginate-hyaluronic acid hydrogel throughout fabrication of tissue restore scaffolds. J Biomater Sci Polym Ed. 2015;26:433–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little CJ, Kulyk WM, Chen X. The Impact of Chondroitin Sulphate and Hyaluronic Acid on chondrocytes cultured inside a fibrin-alginate hydrogel. J Funct Biomater. 2014;5:197–210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Zheng Z, Jia J, Zhang W, Qin L, Zhang W, Lai Y. Preparation and characterization of photocurable composite extracellular matrix-methacrylated hyaluronic acid bioink. J Mater Chem B. 2022;10:4242–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorgensen AM, Chou Z, Gillispie G, Lee SJ, Yoo JJ, Soker S, Atala A. Decellularized pores and skin extracellular matrix (dsECM) improves the Bodily and Organic Properties of Fibrinogen Hydrogel for pores and skin bioprinting purposes. Nanomaterials (Basel) 2020, 10.

  • Debels H, Hamdi M, Abberton Ok, Morrison W. Dermal matrices and bioengineered pores and skin substitutes: a vital evaluate of present choices. Plast Reconstr Surg Glob Open. 2015;3:e284.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang KS, Park SJ, Choi JJ, Kim HN, Shim KM, Kim MJ, Jang IH, Jin SW, Kang SS, Kim SE, Moon SH. Therapeutic efficacy of Synthetic pores and skin produced by 3D bioprinting. Mater (Basel) 2021, 14.

  • Dzobo Ok, Motaung Ok, Adesida A. Latest developments in Decellularized Extracellular Matrix Bioinks for 3D Printing: an up to date evaluate. Int J Mol Sci 2019, 20.

  • Han Z, Dong L, Li A, Li Z, Fu L, Zhang Z, Li X, Li X. Environment friendly angiogenesis-based wound therapeutic by way of hydrogel dressing with extracellular vesicles launch. Mater Right now Bio. 2022;16:100427.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nooshabadi VT, Khanmohamadi M, Valipour E, Mahdipour S, Salati A, Malekshahi ZV, Shafei S, Amini E, Farzamfar S, Ai J. Affect of exosome-loaded chitosan hydrogel in wound restore and layered dermal reconstitution in mice animal mannequin. J Biomedical Mater Res Half A. 2020;108:2138–49.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, et al. Environment friendly angiogenesis-based Diabetic Wound Therapeutic/Pores and skin Reconstruction by way of Bioactive Antibacterial Adhesive Ultraviolet shielding nanodressing with Exosome Launch. ACS Nano. 2019;13:10279–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Liang C, Wang R, Yao X, Guo P, Yuan W, Liu Y, Music Y, Li Z, Xie X. The fabrication of a extremely environment friendly self-healing hydrogel from pure biopolymers loaded with exosomes for the synergistic promotion of extreme wound therapeutic. Biomater Sci. 2019;8:313–24.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Y, Zhang X-L, Lu S-T, Zhang N-Y, Zhang H-J, Zhang J, Zhang J. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound therapeutic and regeneration. Stem Cell Res Ther. 2022;13:407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bar A, Kryukov O, Etzion S, Cohen S. Engineered extracellular vesicle-mediated supply of miR-199a-3p will increase the viability of 3D-printed cardiac patches. Int J Bioprinting. 2023;9:670.

    Article 
    CAS 

    Google Scholar
     

  • Bari E, Gravina GM, Scocozza F, Perteghella S, Frongia B, Tengattini S, Segale L, Torre ML, Conti M. Silk Fibroin Bioink for 3D Printing in tissue regeneration: managed launch of MSC extracellular vesicles. Pharmaceutics 2023, 15.

  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. Respiration-in/breathing-out method to making ready nanosilver-loaded hydrogels: extremely environment friendly antibacterial nanocomposites. J Appl Polym Sci. 2009;111:934–44.

    Article 
    CAS 

    Google Scholar
     

  • Tang L, Zhao C, Liu Y, Zhou J, Dong Y, Huang J, Yang T, Xiao H, Liu D, Wang S, Cai H. GelMA Hydrogel loaded with extracellular vesicles derived from umbilical twine mesenchymal stem cells for selling Cutaneous Diabetic Wound Therapeutic. ACS Omega. 2023;8:10030–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A. Useful Human Vascular Community Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv Funct Mater. 2012;22:2027–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Liu Y, Tang L, Xiao H, Yang Z, Wang S. Preparation of recombinant human collagen III protein hydrogels with sustained launch of Extracellular vesicles for pores and skin Wound Therapeutic. Int J Mol Sci. 2022;23:6289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shitrit Y, Davidovich-Pinhas M, Bianco-Peled H. Shear thinning pectin hydrogels bodily cross-linked with chitosan nanogels. Carbohydr Polym. 2019;225:115249.

    Article 
    PubMed 

    Google Scholar
     

  • Palmara G, Frascella F, Roppolo I, Chiappone A, Chiado A. Useful 3D printing: approaches and bioapplications. Biosens Bioelectron. 2021;175:112849.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of Microenvironment-Particular Bioinspired and Exosome-Strengthened Hydrogel scaffolds for environment friendly cartilage and subchondral bone regeneration. Adv Sci (Weinh). 2023;10:e2303650.

    Article 
    PubMed 

    Google Scholar
     

  • Huang J, Yang R, Jiao J, Li Z, Wang P, Liu Y, Li S, Chen C, Li Z, Qu G, et al. A click on chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound therapeutic. Nat Commun. 2023;14:7856.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Dutta SD, Acharya R, Park H, Kim H, Randhawa A, Patil TV, Ganguly Ok, Luthfikasari R, Lim KT. Stimuli-responsive 3D printable conductive hydrogel: a step towards regulating macrophage polarization and Wound Therapeutic. Adv Healthc Mater 2023:e2302394.

  • Kim BS, Kwon YW, Kong J-S, Park GT, Gao G, Han W, Kim M-B, Lee H, Kim JH, Cho D-W. 3D cell printing of in vitro stabilized pores and skin mannequin and in vivo pre-vascularized pores and skin patch utilizing tissue-specific extracellular matrix bioink: a step in the direction of superior pores and skin tissue engineering. Biomaterials. 2018;168:38–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong Y, Ma H, Lu Y, Cao L, Cheng YY, Tang X, Solar H, Music Ok. Investigation on repairing diabetic foot ulcer primarily based on 3D bio-printing Gel/dECM/Qcs composite scaffolds. Tissue Cell. 2023;85:102213.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Born LJ, McLoughlin ST, Dutta D, Mahadik B, Jia X, Fisher JP, Jay SM. Sustained launched of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-printed gelatin methacrylate hydrogels. J Biomed Mater Res A. 2022;110:1190–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su N, Hao Y, Wang F, Hou W, Chen H, Luo Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses towards tissue restore. Sci Adv 2021, 7.

  • Altabas V. Diabetes, Endothelial Dysfunction, and Vascular Restore: What Ought to a Diabetologist Maintain His Eye on? Int J Endocrinol 2015, 2015:848272.

  • Telgenhoff D, Shroot B. Mobile senescence mechanisms in power wound therapeutic. Cell Loss of life Differ. 2005;12:695–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wall IB, Moseley R, Baird DM, Kipling D, Giles P, Laffafian I, Worth PE, Thomas DW, Stephens P. Fibroblast dysfunction is a key issue within the non-healing of power venous Leg Ulcers. J Make investments Dermatol. 2008;128:2526–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsourdi E, Barthel A, Rietzsch H, Reichel A, Bornstein SR. Present facets within the pathophysiology and remedy of power wounds in diabetes mellitus. Biomed Res Int. 2013;2013:385641.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue M, Jackson CJ. Extracellular matrix reorganization throughout Wound Therapeutic and its influence on irregular scarring. Adv Wound Care. 2015;4:119–36.

    Article 

    Google Scholar
     

  • Wang Y, Music P, Wu L, Su Z, Gui X, Gao C, Zhao H, Wang Y, Li Z, Cen Y, et al. In situ photo-crosslinked adhesive hydrogel loaded with mesenchymal stem cell-derived extracellular vesicles promotes diabetic wound therapeutic. J Mater Chem B. 2023;11:837–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Present and upcoming therapies to modulate pores and skin scarring and fibrosis. Adv Drug Deliv Rev. 2019;146:37–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Y, Xu G, Huang H, Wang Ok, Wang H, Lang M, Gao H, Zhao S. Sequential launch of small extracellular vesicles from Bilayered Thiolated Alginate/Polyethylene Glycol Diacrylate Hydrogels for Scarless Wound Therapeutic. ACS Nano. 2021;15:6352–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SY, Nair MG. Macrophages in wound therapeutic: activation and plasticity. Immunol Cell Biol. 2019;97:258–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbay V, Houssari M, Mekki M, Banquet S, Edwards-Levy F, Henry JP, Dumesnil A, Adriouch S, Thuillez C, Richard V, Brakenhielm E. Function of M2-like macrophage recruitment throughout angiogenic progress issue remedy. Angiogenesis. 2015;18:191–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b + macrophages are important for efficient pores and skin Wound Therapeutic. J Make investments Dermatol. 2016;136:1885–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schilling JA. Wound therapeutic. Surg Clin North Am. 1976;56:859–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji S, Zhu Z, Solar X, Fu X. Useful hair follicle regeneration: an up to date evaluate. Sig Transduct Goal Ther. 2021;6:1–11.

    Article 

    Google Scholar
     

  • Huang C, Du Y, Nabzdyk CS, Ogawa R, Koyama T, Orgill DP, Fu X. Regeneration of hair and different pores and skin appendages: a microenvironment-centric view. Wound Restore and Regeneration. 2016;24:759–66.

    Article 
    PubMed 

    Google Scholar
     

  • Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Li J, Gan LH. Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Supply. Small. 2011;7:1569–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P. Elevated mir-124-3p in microglial exosomes following traumatic mind damage inhibits neuronal irritation and contributes to neurite outgrowth by way of their switch into neurons. FASEB J. 2018;32:512–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian Z, Bai Y, Zhou J, Li L, Na J, Fan Y, Guo X, Liu H. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing contaminated wounds. J Mater Chem B. 2020;8:7197–212.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pop-Busui R, Ang L, Holmes C, Gallagher Ok, Feldman EL. Irritation as a therapeutic goal for Diabetic neuropathies. Curr Diab Rep. 2016;16:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug supply purposes. Adv Drug Deliv Rev. 2021;174:348–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandham S, Su X, Wooden J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Applied sciences and standardization in Analysis on Extracellular vesicles. Tendencies Biotechnol. 2020;38:1066–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, et al. Identification of storage circumstances stabilizing extracellular vesicles preparations. J Extracell Vesicles. 2022;11:e12238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Therapeutic Purposes. Polymers 2020, 12.

  • Bakaic E, Smeets NMB, Hoare T. Injectable hydrogels primarily based on poly(ethylene glycol) and derivatives as practical biomaterials. RSC Adv. 2015;5:35469–86.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yue Ok, Santiago GT-d, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical purposes of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Solar B, Zhu W, Chen S. Photopolymerizable Biomaterials and Gentle-based 3D Printing Methods for Biomedical Purposes. Chem Rev. 2020;120:10695–743.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaeser A, Campos DFD, Puster U, Richtering W, Stevens MM, Fischer H. Controlling Shear stress in 3D bioprinting is a key issue to Stability Printing Decision and Stem Cell Integrity. Adv Healthc Mater. 2016;5:326–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Placone JK, Engler AJ. Latest advances in extrusion-based 3D Printing for Biomedical Purposes. Adv Healthc Mater. 2018;7:1701161.

    Article 

    Google Scholar
     

  • Jin Z, Zhang Z, Shao X, Gu GX. Monitoring anomalies in 3D bioprinting with deep neural networks. ACS Biomater Sci Eng. 2023;9:3945–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, Oh SJ, An SH, Kim WD, Kim SH. Machine learning-based design technique for 3D printable bioink: elastic modulus and yield stress decide printability. Biofabrication. 2020;12:035018.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles