[HTML payload içeriği buraya]
30.9 C
Jakarta
Monday, November 25, 2024

Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing


  • Hinton, G. E. Studying a number of layers of illustration. Traits Cogn. Sci. 11, 428–434 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Indiveri, G. et al. Neuromorphic silicon neuron circuits. Entrance. Neurosci. 5, 1–23 (2011).

    Article 

    Google Scholar
     

  • Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Bartolozzi, C. & Indiveri, G. Synaptic dynamics in analog VLSI. Neural Comput. 19, 2581–2603 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The way forward for electronics primarily based on memristive programs. Nat. Electron. 1, 22–29 (2018).

    Article 

    Google Scholar
     

  • Kendall, J. D. & Kumar, S. The constructing blocks of a brain-inspired pc. Appl. Phys. Rev. 7, 011305 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Bridging organic and synthetic neural networks with rising neuromorphic gadgets: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Im, I. H., Kim, S. J. & Jang, H. W. Memristive gadgets for brand new computing paradigms. Adv. Intell. Syst. 2, 2000105 (2020).

    Article 

    Google Scholar
     

  • Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching supplies for info processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xi, Y. et al. In-memory studying with analog resistive switching reminiscence: a assessment and perspective. Proc. IEEE 109, 14–42 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).

    Article 

    Google Scholar
     

  • Kim, S. J., Kim, S. B. & Jang, H. W. Competing memristors for brain-inspired computing. iScience 24, 101889 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, M., Gao, B., Tang, J., Qian, H. & Wu, H. Reliability of analog resistive switching reminiscence for neuromorphic computing. Appl. Phys. Rev. 7, 011301 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jacobs-Gedrim, R. B. et al. Impression of linearity and write noise of analog resistive reminiscence gadgets in a neural algorithm accelerator. In 2017 IEEE Int. Conf. Rebooting Comput. (ICRC) 1–10 (IEEE, 2017).

  • Han, H., Yu, H., Wei, H., Gong, J. & Xu, W. Current progress in three‐terminal synthetic synapses: from machine to system. Small 15, 1900695 (2019).

    Article 

    Google Scholar
     

  • Fuller, E. J. et al. Parallel programming of an ionic floating-gate reminiscence array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Woo, J. et al. Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic programs. IEEE Trans. Electron Units 63, 5064–5067 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jang, J. W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y. H. Optimization of conductance change in Pr1−xCaxMnO3-based synaptic gadgets for neuromorphic programs. IEEE Electron Gadget Lett. 36, 457–459 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. Y. et al. Mitigating results of non-ideal synaptic machine traits for on-chip studying. In 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015 194–199 (2016).

  • Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its function in perovskite photo voltaic cell operation. Vitality Environ. Sci. 8, 2118–2127 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Haruyama, J., Sodeyama, Okay., Han, L. & Tateyama, Y. First-principles examine of ion diffusion in perovskite photo voltaic cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Organolead halide perovskites for low working voltage multilevel resistive switching. Adv. Mater. 28, 6562–6567 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Enhanced endurance organolead halide perovskite resistive switching reminiscences operable beneath an especially low bending radius. ACS Appl. Mater. Interfaces 9, 30764–30771 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, J., Han, J. S., Hong, Okay., Kim, S. Y. & Jang, H. W. Natural–inorganic hybrid halide perovskites for reminiscences, transistors, and synthetic synapses. Adv. Mater. 30, 1–21 (2018).

    CAS 

    Google Scholar
     

  • Kim, S. G., Han, J. S., Kim, H., Kim, S. Y. & Jang, H. W. Current advances in memristive supplies for synthetic synapses. Adv. Mater. Technol. 3, 1–30 (2018).

    Article 

    Google Scholar
     

  • Kwak, Okay. J., Lee, D. E., Kim, S. J. & Jang, H. W. Halide perovskites for memristive information storage and synthetic synapses. J. Phys. Chem. Lett. 12, 8999–9010 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han, J. S. et al. Lead‐free twin‐part halide perovskites for preconditioned conducting‐bridge reminiscence. Small 16, 2003225 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Im, I. H. et al. Controlling threshold and resistive change functionalities in Ag‐integrated organometallic halide perovskites for memristive crossbar array. Adv. Funct. Mater. 33, 2211358 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. J. et al. Excessive gap mobility inorganic halide perovskite discipline‐impact transistors with enhanced part stability and interfacial defect tolerance. Adv. Electron. Mater. 8, 2100624 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hong, Okay. et al. Robust Fermi-level pinning at steel contacts to halide perovskites. J. Mater. Chem. C 9, 15212–15220 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences all the pieces from the construction to optoelectronic machine effectivity. Chem. Rev. 121, 2230–2291 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Advances in two-dimensional organic-inorganic hybrid perovskites. Vitality Environ. Sci. 13, 1154–1186 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z., Ni, Z. & Huang, J. Direct commentary of quick carriers transport alongside out-of-plane route in a Dion–Jacobson layered perovskite. ACS Vitality Lett. 7, 984–987 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. J. et al. Vertically aligned two-dimensional halide perovskites for reliably operable synthetic synapses. Mater. At this time 52, 19–30 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Niu, T. et al. Diminished-dimensional perovskite enabled by natural diamine for environment friendly photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, W., Yang, Z., Dang, J. & Wang, M. Progress and perspective in Dion–Jacobson part 2D layered perovskite optoelectronic purposes. Nano Vitality 86, 106129 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Niu, T., Xue, Q. & Yip, H. L. Advances in Dion–Jacobson part two-dimensional steel halide perovskite photo voltaic cells. Nanophotonics 10, 2069–2102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, S. et al. Dion–Jacobson part 2D layered perovskites for photo voltaic cells with ultrahigh stability. Joule 3, 794–806 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kang, Okay. et al. Excessive-performance solution-processed organo-metal halide perovskite unipolar resistive reminiscence gadgets in a cross-bar array construction. Adv. Mater. 31, 1804841 (2019).

    Article 

    Google Scholar
     

  • John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Walker, B., Kim, G. H. & Kim, J. Y. Pseudohalides in lead-based perovskite semiconductors. Adv. Mater. 31, 1–7 (2019).

    Article 

    Google Scholar
     

  • Li, X. et al. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 140, 12226–12238 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Interfacial crosslinked quasi-2D perovskite with boosted provider transport and enhanced stability. J. Phys. D 51, 404001 (2018).

    Article 

    Google Scholar
     

  • Li, Y. et al. Bifunctional natural spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite photo voltaic cells. Nano Lett. 19, 150–157 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Thermal and humidity stability of blended spacer cations 2D perovskite photo voltaic cells. Adv. Sci. 8, 1–10 (2021).

    Article 

    Google Scholar
     

  • Zhang, F. & Zhu, Okay. Additive engineering for environment friendly and steady perovskite photo voltaic cells. Adv. Vitality Mater. 10, 1–26 (2020).


    Google Scholar
     

  • Zhang, X. et al. Vertically oriented 2D layered perovskite photo voltaic cells with enhanced effectivity and good stability. Small 13, 2–9 (2017).


    Google Scholar
     

  • Zhang, X. et al. Orientation regulation of phenylethylammonium cation primarily based 2D perovskite photo voltaic cell with effectivity increased than 11%. Adv. Vitality Mater. 8, 1–9 (2018).


    Google Scholar
     

  • Han, J. S. et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching towards environment-friendly and temperature-tolerant nonvolatile reminiscences. ACS Appl. Mater. Interfaces 11, 8155–8163 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kwak, Okay. J. et al. Ambient steady all inorganic CsCu2I3 synthetic synapses for neurocomputing. Nano Lett. 22, 6010–6017 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zucker, R. S. & Regehr, W. G. Quick-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hebb, D. O. The Group of Conduct: a Neuropsychological Idea (Psychology Press, 2002).

  • Shi, J. et al. Direct commentary of quick carriers transport alongside out-of-plane route in a Dion–Jacobson layered perovskite. ACS Vitality Lett. 7, 984–987 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bagdzevicius, S. et al. Interface-type resistive switching in perovskite supplies. J. Electroceram. 39, 157–184 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lyashenko, D., Perez, A. & Zakhidov, A. Excessive‐decision patterning of organohalide lead perovskite pixels for photodetectors utilizing orthogonal photolithography. Phys. Standing Solidi a 214, 1600302 (2017).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned purposes through the use of inkjet printing. ACS Nano 13, 2042–2049 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Pourdavoud, N. et al. Photonic nanostructures patterned by thermal nanoimprint instantly into organo‐steel halide perovskites. Adv. Mater. 29, 1605003 (2017).

    Article 

    Google Scholar
     

  • Zou, C. et al. Photolithographic patterning of perovskite skinny movies for multicolor show purposes. Nano Lett. 20, 3710–3717 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harwell, J. et al. Patterning multicolor hybrid perovskite movies through top-down lithography. ACS Nano 13, 3823–3829 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles