Rosenberg, S. A. & Restifo, N. P. Adoptive cell switch as customized immunotherapy for human most cancers. Science 348, 62–68 (2015).
Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of most cancers immunotherapy. Nat. Rev. Most cancers 16, 566–581 (2016).
Kershaw, M. H., Westwood, J. A. & Darcy, P. Okay. Gene-engineered T cells for most cancers remedy. Nat. Rev. Most cancers 13, 525–541 (2013).
Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).
Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).
Wu, L. et al. Trispecific antibodies improve the therapeutic efficacy of tumor-directed T cells by means of T cell receptor co-stimulation. Nat. Most cancers 1, 86–98 (2020).
Hollyman, D. et al. Manufacturing validation of biologically practical T cells focused to CD19 antigen for autologous adoptive cell remedy. J. Immunother. 32, 169–180 (2009).
Cheung, A. S., Zhang, D. Okay. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells allow ex vivo enlargement of main T cells. Nat. Biotechnol. 36, 160–169 (2018).
Zhang, D. Okay. Y., Cheung, A. S. & Mooney, D. J. Activation and enlargement of human T cells utilizing synthetic antigen-presenting cell scaffolds. Nat. Protoc. 15, 773–798 (2020).
Fadel, T. R. et al. A carbon nanotube–polymer composite for T-cell remedy. Nat. Nanotechnol. 9, 639–647 (2014).
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).
Lee, Okay.-H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).
Yokosuka, T. & Saito, T. Dynamic regulation of T-cell costimulation by means of TCR–CD28 microclusters. Immunol. Rev. 229, 27–40 (2009).
Keene, J. A. & Forman, J. Helper exercise is required for the in vivo era of cytotoxic T lymphocytes. J. Exp. Med. 155, 768–782 (1982).
Liao, W., Lin, J.-X. & Leonard, W. J. IL-2 household cytokines: new insights into the complicated roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011).
Gillis, S. & Smith, Okay. A. Long run tradition of tumour-specific cytotoxic T cells. Nature 268, 154–156 (1977).
Smith, Okay. A. Interleukin-2: inception, impression, and implications. Science 240, 1169–1176 (1988).
Abbas, A. Okay., Trotta, E., Simeonov, R. D., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3, eaat1482 (2018).
Solar, X. et al. Nano-graphene oxide for mobile imaging and drug supply. Nano Res. 1, 203–212 (2008).
Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).
Loftus, C., Saeed, M., Davis, D. M. & Dunlop, I. E. Activation of human pure killer cells by graphene oxide-templated antibody nanoclusters. Nano Lett. 18, 3282–3289 (2018).
Poulin, P. et al. Superflexibility of graphene oxide. Proc. Natl Acad. Sci. USA 113, 11088–11093 (2016).
Engelhard, V. H., Strominger, J. L., Mescher, M. & Burakoff, S. Induction of secondary cytotoxic T lymphocytes by purified HLA-A and HLA-B antigens reconstituted into phospholipid vesicles. Proc. Natl Acad. Sci. 75, 5688–5691 (1978).
Mescher, M. F. Floor contact necessities for activation of cytotoxic T lymphocytes. J. Immunol. 149, 2402–2405 (1992).
Hui, E. et al. T cell costimulatory receptor CD28 is a main goal for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).
Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative assist for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).
Meuer, S. C. et al. Proof for the T3-associated 90K heterodimer because the T-cell antigen receptor. Nature 303, 808–810 (1983).
Bikoue, A. et al. Quantitative evaluation of leukocyte membrane antigen expression: regular grownup values. Cytometry 26, 137–147 (1996).
Deeg, J. et al. T cell activation is set by the variety of offered antigens. Nano Lett. 13, 5619–5626 (2013).
Smith, M. R., Tolbert, S. V. & Wen, F. Protein-scaffold directed nanoscale meeting of T cell ligands: synthetic antigen presentation with outlined valency, density, and ratio. ACS Synth. Biol. 7, 1629–1639 (2018).
Acuto, O., Mise-Omata, S., Mangino, G. & Michel, F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol. Rev. 192, 21–31 (2003).
Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).
Bashour, Okay. T. et al. Cross speak between CD3 and CD28 is spatially modulated by protein lateral mobility. Mol. Cell. Biol. 34, 955–964 (2014).
Boyman, O. & Sprent, J. The function of interleukin-2 throughout homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).
Zeidan, N., Damen, H., Roy, D.-C. & Dave, V. P. Crucial function for TCR sign power and MHC specificity in ThPOK-induced CD4 helper lineage alternative. J. Immunol. 202, 3211–3225 (2019).
Perez-Diez, A. et al. CD4 cells will be extra environment friendly at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).
Agarwal, S. et al. In vivo era of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. J. Am. Soc. Gene Ther. 28, 1783–1794 (2020).
Voss, S. D. et al. Serum ranges of the low-affinity interleukin-2 receptor molecule (TAC) throughout IL-2 remedy mirror systemic lymphoid mass activation. Most cancers Immunol. Immunother. 29, 261–269 (1989).
Besser, M. J. et al. Modifying interleukin-2 concentrations throughout tradition improves operate of T cells for adoptive immunotherapy. Cytotherapy 11, 206–217 (2009).
Banerjee, A. et al. A reengineered frequent chain cytokine augments CD8+ T cell-dependent immunotherapy. JCI Perception 7, e158889 (2022).
Hank, J. A. et al. Distinct scientific and laboratory exercise of two recombinant interleukin-2 preparations. Clin. Most cancers Res. 5, 281–289 (1999).
Roe, T., Reynolds, T. C., Yu, G. & Brown, P. O. Integration of murine leukemia virus DNA will depend on mitosis. EMBO J. 12, 2099–2108 (1993).
Bukrinsky, M. I., Stanwick, T. L., Dempsey, M. P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 an infection. Science 254, 423–427 (1991).
Gallay, P., Swingler, S., Music, J., Bushman, F. & Trono, D. HIV nuclear import is ruled by the phosphotyrosine-mediated binding of matrix to the core area of integrase. Cell 83, 569–576 (1995).
Colombetti, S., Basso, V., Mueller, D. L. & Mondino, A. Extended TCR/CD28 engagement drives IL-2-independent T cell clonal enlargement by means of signaling mediated by the mammalian goal of rapamycin. J. Immunol. 176, 2730–2738 (2006).
Gett, A. V. & Hodgkin, P. D. A mobile calculus for sign integration by T cells. Nat. Immunol. 1, 239–244 (2000).
Bretones, G., Delgado, M. D. & León, J. Myc and cell cycle management. Biochim. Biophys. Acta Gene Regul. Mech. 1849, 506–516 (2015).
Yost, Okay. E. et al. Clonal substitute of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).
Wang, Y. et al. iTALK: an R bundle to characterize and illustrate intercellular communication. Preprint at bioRxiv https://doi.org/10.1101/507871 (2019).
Elgueta, R. et al. Molecular mechanism and performance of CD40/CD40L engagement within the immune system. Immunol. Rev. 229, 152–172 (2009).
Honey, Okay. CCL3 and CCL4 actively recruit CD8+ T cells. Nat. Rev. Immunol. 6, 427–427 (2006).
Cheng, G., Yu, A. & Malek, T. R. T cell tolerance and the multi-functional function of IL-2R signaling in T regulatory cells. Immunol. Rev. 241, 63–76 (2011).
Ruiz, O. N. et al. Graphene oxide: a nonspecific enhancer of mobile progress. ACS Nano 5, 8100–8107 (2011).
Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X. & Diniz da Costa, J. C. Structural and practical investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like response. Sci. Rep. 4, 4594 (2014).
Szabó, T., Tombácz, E., Illés, E. & Dékány, I. Enhanced acidity and pH-dependent floor cost characterization of successively oxidized graphite oxides. Carbon 44, 537–545 (2006).
Dékány, I., Krüger-Grasser, R. & Weiss, A. Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid Polym. Sci. 276, 570–576 (1998).
Zhu, Y. et al. Improvement of hematopoietic stem cell-engineered invariant pure killer T cell remedy for most cancers. Cell Stem Cell 25, 542–557.e9 (2019).
Giannoni, F. et al. Allelic exclusion and peripheral reconstitution by TCR transgenic T cells arising from transduced human hematopoietic stem/progenitor cells. Mol. Ther. 21, 1044–1054 (2013).
Cartier, N. et al. Hematopoietic stem cell gene remedy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).
Engels, B. et al. Retroviral vectors for high-level transgene expression in T lymphocytes. Hum. Gene Ther. 14, 1155–1168 (2003).
Miller, A. D. et al. Building and properties of retrovirus packaging cells primarily based on gibbon ape leukemia virus. J. Virol. 65, 2220–2224 (1991).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).