Pumm, A.-Ok. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).
Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).
Kim, Y. & Nam, J.-M. Mechanically interlocked gold nanocatenanes. Nat. Synth. 1, 649–657 (2022).
Hart, L. F. et al. Materials properties and functions of mechanically interlocked polymers. Nat. Rev. Mater. 6, 508–530 (2021).
Wu, Z. et al. Superfast near-infrared light-driven polymer multilayer rockets. Small 12, 577–582 (2016).
Wu, X. et al. Gentle-driven microdrones. Nat. Nanotechnol. 17, 477–484 (2022).
McNeill, J. M., Nama, N., Braxton, J. M. & Mallouk, T. E. Wafer-scale fabrication of micro- to nanoscale bubble swimmers and their quick autonomous propulsion by ultrasound. ACS Nano 14, 7520–7528 (2020).
Wu, D. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023).
Schamel, D. et al. Nanopropellers and their actuation in advanced viscoelastic media. ACS Nano 8, 8794–8801 (2014).
Maier, A. M. et al. Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16, 906–910 (2016).
Stanton, M. M. et al. Magnetotactic micro organism powered biohybrids goal E. coli biofilms. ACS Nano 11, 9968–9978 (2017).
Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robotic with multimodal locomotion. Nature 554, 81–85 (2018).
Kopperger, E. et al. A self-assembled nanoscale robotic arm managed by electrical fields. Science 359, 296–301 (2018).
Huang, J., Roberts, Anthony, J., Leschziner, Andres, E. & Reck-Peterson, S. L. Lis1 acts as a ‘clutch’ between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).
Elosegui-Artola, A. et al. Rigidity sensing and adaptation by way of regulation of integrin sorts. Nat. Mater. 13, 631–637 (2014).
Blair, Ok. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A molecular clutch disables flagella within the Bacillus subtilis biofilm. Science 320, 1636–1638 (2008).
Lee, J.-u et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely shifting animals. Nat. Mater. 20, 1029–1036 (2021).
Lee, J.-H. et al. Change-coupled magnetic nanoparticles for environment friendly warmth induction. Nat. Nanotechnol. 6, 418–422 (2011).
Kim, J.-w et al. Single-cell mechanogenetics utilizing monovalent magnetoplasmonic nanoparticles. Nat. Protoc. 12, 1871–1889 (2017).
Shimizu, T., Lungerich, D., Harano, Ok. & Nakamura, E. Time-resolved imaging of stochastic cascade reactions over a submillisecond to second time vary on the angstrom degree. J. Am. Chem. Soc. 144, 9797–9805 (2022).
Mortensen, Ok. I., Flyvbjerg, H. & Pedersen, J. N. Confined Brownian movement tracked with movement blur: estimating diffusion coefficient and dimension of confining house. Entrance. Phys. 8, 583202 (2021).
Kheifets, S., Simha, A., Melin, Ok., Li, T. & Raizen Mark, G. Remark of Brownian movement in liquids at quick occasions: instantaneous velocity and reminiscence loss. Science 343, 1493–1496 (2014).
Lee, Y. Ok., Kim, S., Oh, J. W. & Nam, J. M. Massively parallel and extremely quantitative single-particle evaluation on interactions between nanoparticles on supported lipid bilayer. J. Am. Chem. Soc. 136, 4081–4088 (2014).
Kim, S. et al. Optokinetically encoded nanoprobe-based multiplexing technique for microRNA profiling. J. Am. Chem. Soc. 139, 3558–3566 (2017).
Svoboda, Ok. & Block, S. M. Pressure and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).
Morimatsu, M., Mekhdjian, A. H., Adhikari, A. S. & Dunn, A. R. Molecular rigidity sensors report forces generated by single integrin molecules in dwelling cells. Nano Lett. 13, 3985–3989 (2013).
Stabley, D. R., Jurchenko, C., Marshall, S. S. & Salaita, Ok. S. Visualizing mechanical rigidity throughout membrane receptors with a fluorescent sensor. Nat. Strategies 9, 64–67 (2011).
Kwak, M. et al. Adherens junctions manage size-selective proteolytic hotspots essential for Notch signalling. Nat. Cell Biol. 24, 1739–1753 (2022).
Zhang, Y., Ge, C., Zhu, C. & Salaita, Ok. DNA-based digital rigidity probes reveal integrin forces throughout early cell adhesion. Nat. Commun. 5, 5167 (2014).
Zhang, Y., Lu, F., Yager, Ok. G., van der Lelie, D. & Gang, O. A basic technique for the DNA-mediated self-assembly of purposeful nanoparticles into heterogeneous techniques. Nat. Nanotechnol. 8, 865–872 (2013).
Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).
Tub, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).
Hurst, S. J., Lytton-Jean, A. Ok. R. & Mirkin, C. A. Maximizing DNA loading on a spread of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).
Stöber, W., Fink, A. & Bohn, E. Managed development of monodisperse silica spheres within the micron dimension vary. J. Colloid Interface Sci. 26, 62–69 (1968).
Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle monitoring. Strategies 115, 80–90 (2017).