[HTML payload içeriği buraya]
26.9 C
Jakarta
Sunday, November 24, 2024

‘Inexperienced’ synthesis of metals and their oxide nanoparticles: purposes for environmental remediation | Journal of Nanobiotechnology


  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental purposes of semiconductor photocatalysis. Chem Rev. 1995;95:69–96. https://doi.org/10.1021/cr00033a004.

    Article 
    CAS 

    Google Scholar
     

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA. Most cancers cell imaging and photothermal remedy within the near-infrared area through the use of gold nanorods. J Am Chem Soc. 2006;128:2115–20. https://doi.org/10.1021/ja057254a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial results of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101. https://doi.org/10.1016/j.nano.2006.12.001.

    Article 
    CAS 

    Google Scholar
     

  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and organic purposes. Chem Rev. 2008;108:2064–110. https://doi.org/10.1021/cr068445e.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livage J, Henry M, Sanchez C. Sol–gel chemistry of transition steel oxides. Prog Stable State Chem. 1988;18:259–341. https://doi.org/10.1016/0079-6786(88)90005-2.

    Article 
    CAS 

    Google Scholar
     

  • O’Neal DP, Hirsch LR, Halas NJ, et al. Photograph-thermal tumor ablation in mice utilizing close to infrared-absorbing nanoparticles. Most cancers Lett. 2016;209:171–6. https://doi.org/10.1016/j.canlet.2004.02.004.

    Article 
    CAS 

    Google Scholar
     

  • Oskam G. Metallic oxide nanoparticles: synthesis, characterization and utility. J Sol–gel Sci Technol. 2006;37:161–4.

    Article 
    CAS 

    Google Scholar
     

  • Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of steel nanoparticles utilizing fungi and actinomycete. Curr Sci. 2003;85:162–70. https://doi.org/10.1016/S0927-7765(02)00174-1.

    Article 
    CAS 

    Google Scholar
     

  • Su X-Y, Liu P-D, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in most cancers radiation remedy. Most cancers Biol Med. 2014;11:86–91. https://doi.org/10.7497/j.issn.2095-3941.2014.02.003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao G. Nanastructures and nanomaterials—synthesis, properties and purposes. Singapore: World Scientific; 2004.

    Guide 

    Google Scholar
     

  • Doble M, Kruthiventi AK. Inexperienced chemistry and engineering. Cambridge: Educational Press; 2007.


    Google Scholar
     

  • Aguilar Z. Nanomaterials for medical purposes. Boston: Elsevier; 2013.


    Google Scholar
     

  • Dahoumane SA, Yéprémian C, Djédiat C, et al. Enchancment of kinetics, yield, and colloidal stability of biogenic gold nanoparticles utilizing residing cells of Euglena gracilis microalga. J Nanoparticle Res. 2016. https://doi.org/10.1007/s11051-016-3378-1.

    Article 

    Google Scholar
     

  • El-Rafie HM, El-Rafie MH, Zahran MK. Inexperienced synthesis of silver nanoparticles utilizing polysaccharides extracted from marine macro algae. Carbohydr Polym. 2013;96:403–10. https://doi.org/10.1016/j.carbpol.2013.03.071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husen A, Siddiqi KS. Vegetation and microbes assisted selenium nanoparticles: characterization and utility. J Nanobiotechnol. 2014;12:28.

    Article 

    Google Scholar
     

  • Khan M, Al-Marri AH, Khan M, et al. Inexperienced method for the efficient discount of graphene oxide utilizing Salvadora persica L. root (Miswak) extract. Nanoscale Res Lett. 2015;10:1–9. https://doi.org/10.1186/s11671-015-0987-z.

    Article 
    CAS 

    Google Scholar
     

  • Patel V, Berthold D, Puranik P, Gantar M. Screening of cyanobacteria and microalgae for his or her potential to synthesize silver nanoparticles with antibacterial exercise. Biotechnol Reviews. 2015;5:112–9. https://doi.org/10.1016/j.btre.2014.12.001.

    Article 

    Google Scholar
     

  • Siddiqi KS, Husen A. Fabrication of steel nanoparticles from fungi and steel salts: scope and utility. Nanoscale Res Lett. 2016;11:1–15.

    Article 

    Google Scholar
     

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: present standing and future prospects. Appl Microbiol Biotechnol. 2016;100:2555–66.

    Article 
    CAS 

    Google Scholar
     

  • Gericke M, Pinches A. Microbial manufacturing of gold nanoparticles. Gold Bull. 2006;39:22–8. https://doi.org/10.1007/BF03215529.

    Article 
    CAS 

    Google Scholar
     

  • Iravani S. Micro organism in nanoparticle synthesis: present standing and future prospects. Int Sch Res Not. 2014;2014:1–18. https://doi.org/10.1155/2014/359316.

    Article 

    Google Scholar
     

  • Thakkar KN, Mhatre SS, Parikh RY. Organic synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med. 2010;6:257–62.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y-L, Tuan H-Y, Tien C-W, et al. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog. 2009;25:1260–6. https://doi.org/10.1002/btpr.199.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological ideas and future purposes. J Nanoparticle Res. 2008;10:507–17.

    Article 
    CAS 

    Google Scholar
     

  • Narayanan KB, Sakthivel N. Synthesis and characterization of nano-gold composite utilizing Cylindrocladium floridanum and its heterogeneous catalysis within the degradation of 4-nitrophenol. J Hazard Mater. 2011;189:519–25. https://doi.org/10.1016/j.jhazmat.2011.02.069.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurkov AM, Kemler M, Begerow D. Species accumulation curves and incidence-based species richness estimators to appraise the variety of cultivable yeasts from beech forest soils. PLoS ONE. 2011;1:1. https://doi.org/10.1371/journal.pone.0023671.

    Article 
    CAS 

    Google Scholar
     

  • Marchiol L. Synthesis of steel nanoparticles in residing crops. Ital J Agron. 2012;7:274–82.


    Google Scholar
     

  • Anastas PT, Warner JC. 12 ideas of inexperienced chemistry. Inexperienced chemistry: idea and apply. Oxford: Oxford College Press; 1998.


    Google Scholar
     

  • Vidya C, Hiremath S, Chandraprabha MN, et al. Inexperienced synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol. 2013;1:118–20.


    Google Scholar
     

  • Gnanasangeetha D, Saralathambavani D. Biogenic manufacturing of zinc oxide nanoparticles utilizing Acalypha indica. J Chem Biol Phys Sci. 2014;4:238–46.


    Google Scholar
     

  • Devi HS, Singh TD. Synthesis of copper oxide nanoparticles by a novel methodology and its utility within the degradation of methyl orange. Adv Electron Electr Eng. 2014;4:83–8.


    Google Scholar
     

  • Maensiri S, Laokul P, Klinkaewnarong J, et al. Indium oxide (in 2O3) nanoparticles utilizing aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater. 2008;10:161–5.


    Google Scholar
     

  • Gunalan S, Sivaraj R, Rajendran V. Inexperienced synthesized ZnO nanoparticles towards bacterial and fungal pathogens. Prog Nat Sci Mater Int. 2012;22:693–700. https://doi.org/10.1016/j.pnsc.2012.11.015.

    Article 

    Google Scholar
     

  • Iravani S. Inexperienced synthesis of steel nanoparticles utilizing crops. Inexperienced Chem. 2011;13:2638. https://doi.org/10.1039/c1gc15386b.

    Article 
    CAS 

    Google Scholar
     

  • Shanker U, Jassal V, Rani M, Kaith BS. In direction of inexperienced synthesis of nanoparticles: from bio-assisted sources to benign solvents. A assessment. Int J Environ Anal Chem. 2016;96:801–35.

    CAS 

    Google Scholar
     

  • Yoosaf Okay, Ipe BI, Suresh CH, Thomas KG. In situ synthesis of steel nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C. 2007;111:12839–47. https://doi.org/10.1021/jp073923q.

    Article 
    CAS 

    Google Scholar
     

  • Sylvestre J, Poulin S, Kabashin AV, et al. Floor chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108:16864–9. https://doi.org/10.1021/jp047134.

    Article 
    CAS 

    Google Scholar
     

  • Er H, Yasuda H, Harada M, et al. Formation of silver nanoparticles from ionic liquids comprising N-alkylethylenediamine: results of dissolution modes of the silver(I) ions within the ionic liquids. Colloids Surf A Physicochem Eng Asp. 2017;522:503–13. https://doi.org/10.1016/j.colsurfa.2017.03.046.

    Article 
    CAS 

    Google Scholar
     

  • Srivastava V. In situ era of ru nanoparticles to catalyze CO2 hydrogenation to formic acid. Catal Lett. 2014;144:1745–50. https://doi.org/10.1007/s10562-014-1321-6.

    Article 
    CAS 

    Google Scholar
     

  • Vollmer C, Redel E, Abu-Shandi Okay, et al. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. Chem A Eur J. 2010;16:3849–58. https://doi.org/10.1002/chem.200903214.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Cui H. Synthesis and characterization of functionalized ionic liquid-stabilized steel (gold and platinum) nanoparticles and steel nanoparticle/carbon nanotube hybrids. Langmuir. 2009;25:2604–12. https://doi.org/10.1021/la803347h.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang ZC. Catalysis in ionic liquids. Adv Catal. 2006;49:153–237.

    CAS 

    Google Scholar
     

  • Dupont J, De Souza RF, Suarez PAZ. Ionic liquid (molten salt) part organometallic catalysis. Chem Rev. 2002;102:3667–92. https://doi.org/10.1021/cr010338r.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev. 2007;107:2757–85.

    Article 

    Google Scholar
     

  • Welton T. Ionic liquids in catalysis. Coord Chem Rev. 2004;248:2459–77.

    Article 
    CAS 

    Google Scholar
     

  • Bussamara R, Melo WWM, Scholten JD, et al. Managed synthesis of Mn3O4 nanoparticles in ionic liquids. Dalton Trans. 2013;42:14473. https://doi.org/10.1039/c3dt32348j.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazarus LL, Riche CT, Malmstadt N, Brutchey RL. Impact of ionic liquid impurities on the synthesis of silver nanoparticles. Langmuir. 2012;28:15987–93. https://doi.org/10.1021/la303617f.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li N, Bai X, Zhang S, et al. Synthesis of silver nanoparticles in ionic liquid by a easy efficient electrochemical methodology. J Dispers Sci Technol. 2008;29:1059–61. https://doi.org/10.1080/01932690701815606.

    Article 
    CAS 

    Google Scholar
     

  • Kim Okay-S, Demberelnyamba D, Lee H. Dimension-selective synthesis of gold and platinum nanoparticles utilizing novel thiol-functionalized ionic liquids. Langmuir. 2004;20:556–60. https://doi.org/10.1021/la0355848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dupont J, Fonseca GS, Umpierre AP, et al. Transition-metal nanoparticles in imidazolium ionic liquids: recyclable catalysts for biphasic hydrogenation reactions. J Am Chem Soc. 2002;124:4228–9. https://doi.org/10.1021/ja025818u.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouquillon S, Courant T, Dean D, et al. Biodegradable ionic liquids: chosen artificial purposes. Aust J Chem. 2007;60:843–7. https://doi.org/10.1071/CH07257.

    Article 
    CAS 

    Google Scholar
     

  • Carter EB, Culver SL, Fox PA, et al. Candy success: ionic liquids derived from non-nutritive sweeteners. Chem Commun (Camb). 2004. https://doi.org/10.1039/b313068a.

    Article 

    Google Scholar
     

  • Harjani JR, Singer RD, Garcia MT, Scammells PJ. Biodegradable pyridinium ionic liquids: design, synthesis and analysis. Inexperienced Chem. 2009;11:83–90. https://doi.org/10.1039/B811814K.

    Article 
    CAS 

    Google Scholar
     

  • Imperato G, König B, Chiappe C. Ionic inexperienced solvents from renewable sources. Eur J Org Chem. 2007;2007:1049–58.

    Article 

    Google Scholar
     

  • Fürstner A, Ackermann L, Beck Okay, et al. Olefin metathesis in supercritical carbon dioxide. J Am Chem Soc. 2001;123:9000–6. https://doi.org/10.1021/ja010952k.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wittmann Okay, Wisniewski W, Mynott R, et al. Supercritical carbon dioxide as solvent and non permanent defending group for rhodium-catalyzed hydroaminomethylation. Chem A Eur J. 2001;7:4584–9. https://doi.org/10.1002/1521-3765(20011105)7:21percent3c4584:AID-CHEM4584percent3e3.0.CO;2-P.

    Article 
    CAS 

    Google Scholar
     

  • Pollet P, Eckert CA, Liotta CL. Solvents for sustainable chemical processes. WIT Trans Ecol Environ. 2011;154:21–31. https://doi.org/10.2495/CHEM110031.

    Article 
    CAS 

    Google Scholar
     

  • Ohde H, Hunt F, Wai CM. Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater. 2001;13:4130–5. https://doi.org/10.1021/cm010030g.

    Article 
    CAS 

    Google Scholar
     

  • Sue Okay, Adschiri T, Arai Okay. Predictive mannequin for equilibrium constants of aqueous inorganic species at subcritical and supercritical situations. Ind Eng Chem Res. 2002;41:3298–306. https://doi.org/10.1021/ie010956y.

    Article 
    CAS 

    Google Scholar
     

  • Kim M, Lee BY, Ham HC, et al. Facile one-pot synthesis of tungsten oxide (WO3− x) nanoparticles utilizing sub and supercritical fluids. J Supercrit Fluids. 2016;111:8–13. https://doi.org/10.1016/j.supflu.2016.01.011.

    Article 
    CAS 

    Google Scholar
     

  • Solar Q, Cai X, Li J, et al. Inexperienced synthesis of silver nanoparticles utilizing tea leaf extract and analysis of their stability and antibacterial exercise. Colloids Surf A Physicochem Eng Asp. 2014;444:226–31. https://doi.org/10.1016/j.colsurfa.2013.12.065.

    Article 
    CAS 

    Google Scholar
     

  • Sadeghi B, Gholamhoseinpoor F. A examine on the soundness and inexperienced synthesis of silver nanoparticles utilizing Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Half A Mol Biomol Spectrosc. 2015;134:310–5. https://doi.org/10.1016/j.saa.2014.06.046.

    Article 
    CAS 

    Google Scholar
     

  • Fukushi Okay, Sato T. Utilizing a floor complexation mannequin to foretell the character and stability of nanoparticles. Environ Sci Technol. 2005;39:1250–6. https://doi.org/10.1021/es0491984.

    Article 
    CAS 

    Google Scholar
     

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Natural-coated silver nanoparticles in organic and environmental situations: destiny, stability and toxicity. Adv Colloid Interface Sci. 2014;204:15–34. https://doi.org/10.1016/j.cis.2013.12.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tejamaya M, Römer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46:7011–7. https://doi.org/10.1021/es2038596.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levard C, Hotze EM, Lowry GV, Brown GE. Environmental transformations of silver nanoparticles: impression on stability and toxicity. Environ Sci Technol. 2012;46:6900–14.

    Article 
    CAS 

    Google Scholar
     

  • Leonard Okay, Ahmmad B, Okamura H, Kurawaki J. In situ inexperienced synthesis of biocompatible ginseng capped gold nanoparticles with exceptional stability. Colloids Surf B Biointerfaces. 2011;82:391–6. https://doi.org/10.1016/j.colsurfb.2010.09.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Virkutyte J, Varma RS. Inexperienced synthesis of steel nanoparticles: biodegradable polymers and enzymes in stabilization and floor functionalization. Chem Sci. 2011;2:837. https://doi.org/10.1039/c0sc00338g.

    Article 
    CAS 

    Google Scholar
     

  • Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated inexperienced synthesis of silver nanoparticles from extensively obtainable Indian crops: synthesis, characterization, antimicrobial property and toxicity evaluation. Bioresour Bioprocess. 2014;1:1–10. https://doi.org/10.1186/s40643-014-0003-y.

    Article 

    Google Scholar
     

  • Sneha Okay, Sathishkumar M, Mao J, et al. Corynebacterium glutamicum-mediated crystallization of silver ions via sorption and discount processes. Chem Eng J. 2010;162:989–96. https://doi.org/10.1016/j.cej.2010.07.006.

    Article 
    CAS 

    Google Scholar
     

  • Kalishwaralal Okay, Deepak V, Ramkumarpandian S, et al. Extracellular biosynthesis of silver nanoparticles by the tradition supernatant of Bacillus licheniformis. Mater Lett. 2008;62:4411–3. https://doi.org/10.1016/j.matlet.2008.06.051.

    Article 
    CAS 

    Google Scholar
     

  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles utilizing plant extracts. Biotechnol Adv. 2013;31:346–56.

    Article 
    CAS 

    Google Scholar
     

  • Dwivedi AD, Gopal Okay. Biosynthesis of silver and gold nanoparticles utilizing Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp. 2010;369:27–33. https://doi.org/10.1016/j.colsurfa.2010.07.020.

    Article 
    CAS 

    Google Scholar
     

  • Jha AK, Prasad Okay, Kumar V, Prasad Okay. Biosynthesis of silver nanoparticles utilizing eclipta leaf. Biotechnol Prog. 2009;25:1476–9. https://doi.org/10.1002/btpr.233.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malik P, Shankar R, Malik V, et al. Inexperienced chemistry primarily based benign routes for nanoparticle synthesis. J Nanoparticles. 2014;2014:1–14. https://doi.org/10.1155/2014/302429.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their purposes. J Nanomater. 2011. https://doi.org/10.1155/2011/270974.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukunthan KS, Balaji S. Cashew apple juice (Anacardium occidentale L.) quickens the synthesis of silver nanoparticles. Int J Inexperienced Nanotechnol. 2012;4:71–9. https://doi.org/10.1080/19430892.2012.676900.

    Article 
    CAS 

    Google Scholar
     

  • Prathna TC, Mathew L, Chandrasekaran N, et al. Biomimetic synthesis of nanoparticles: science, know-how and applicability. Biomimetics Be taught Nat. 2010. https://doi.org/10.5772/8776.

    Article 

    Google Scholar
     

  • Ahmad N, Sharma S, Alam MK, et al. Speedy synthesis of silver nanoparticles utilizing dried medicinal plant of basil. Colloids Surf B Biointerfaces. 2010;81:81–6. https://doi.org/10.1016/j.colsurfb.2010.06.029.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panigrahi S, Kundu S, Ghosh S, et al. Basic methodology of synthesis for steel nanoparticles. J Nanoparticle Res. 2004;6:411–4. https://doi.org/10.1007/s11051-004-6575-2.

    Article 
    CAS 

    Google Scholar
     

  • Zayed MF, Eisa WH, Shabaka AA. Malva parviflora extract assisted inexperienced synthesis of silver nanoparticles. Spectrochim Acta Half A Mol Biomol Spectrosc. 2012;98:423–8. https://doi.org/10.1016/j.saa.2012.08.072.

    Article 
    CAS 

    Google Scholar
     

  • Gruen LC. Interplay of amino acids with silver(I) ions. BBA Protein Struct. 1975;386:270–4. https://doi.org/10.1016/0005-2795(75)90268-8.

    Article 
    CAS 

    Google Scholar
     

  • Tan YN, Lee JY, Wang DIC. Uncovering the design guidelines for peptide synthesis of steel nanoparticles. J Am Chem Soc. 2010;132:5677–86. https://doi.org/10.1021/Ja907454f.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Shen Y, Xie A, et al. Inexperienced synthesis of silver nanoparticles utilizing Capsicum annuum L. extract. Inexperienced Chem. 2007;9:852. https://doi.org/10.1039/b615357g.

    Article 
    CAS 

    Google Scholar
     

  • Huang Q, Li D, Solar Y, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 2007;1:1. https://doi.org/10.1088/0957-4484/18/10/105104.

    Article 
    CAS 

    Google Scholar
     

  • Mude N, Ingle A, Gade A, Rai M. Synthesis of silver nanoparticles utilizing callus extract of Carica papaya—a primary report. J Plant Biochem Biotechnol. 2009;18:83–6. https://doi.org/10.1007/BF03263300.

    Article 
    CAS 

    Google Scholar
     

  • Kesharwani J, Yoon KY, Hwang J, Rai M. Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism concerned in synthesis. J Bionanosci. 2009;3:39–44. https://doi.org/10.1166/jbns.2009.1008.

    Article 
    CAS 

    Google Scholar
     

  • Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of various shapes. J Mater Chem. 2003;13:1822. https://doi.org/10.1039/b303808b.

    Article 
    CAS 

    Google Scholar
     

  • Singh AK, Talat M, Singh DP, Srivastava ON. Biosynthesis of gold and silver nanoparticles by pure precursor clove and their functionalization with amine group. J Nanoparticle Res. 2010;12:1667–75. https://doi.org/10.1007/s11051-009-9835-3.

    Article 
    CAS 

    Google Scholar
     

  • Glusker JP, Katz AK, Bock CW. Metallic ions in organic techniques. Rigaku J. 1999;16:8–17.

    CAS 

    Google Scholar
     

  • Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic examine. Chem A Eur J. 2007;13:3160–8. https://doi.org/10.1002/chem.200601492.

    Article 
    CAS 

    Google Scholar
     

  • Shah M, Fawcett D, Sharma S, et al. Inexperienced synthesis of metallic nanoparticles by way of organic entities. Supplies (Basel). 2015;8:7278–308.

    Article 
    CAS 

    Google Scholar
     

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, et al. Antimicrobial exercise of the metals and steel oxide nanoparticles. Mater Sci Eng C. 2014;44:278–84.

    Article 
    CAS 

    Google Scholar
     

  • Honest RJ, Tor Y. Antibiotics and bacterial resistance within the twenty first century. Perspect Med Chem. 2014. https://doi.org/10.4137/pmc.s14459.

    Article 

    Google Scholar
     

  • Jayaraman R. Antibiotic resistance: an outline of mechanisms and a paradigm shift. Curr Sci. 2009;96:1475–84.

    CAS 

    Google Scholar
     

  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic instrument to fight microbial resistance. Adv Drug Deliv Rev. 2013;65:1803–15.

    Article 
    CAS 

    Google Scholar
     

  • Zinjarde S. Bio-inspired nanomaterials and their purposes as antimicrobial brokers. Chron Younger Sci. 2012;3:74. https://doi.org/10.4103/2229-5186.94314.

    Article 
    CAS 

    Google Scholar
     

  • Lok C, Ho C, Chen R, et al. Proteomic evaluation of the mode of antibacterial motion of silver nanoparticles. J Proteome Res. 2006;5:916–24. https://doi.org/10.1021/pr0504079.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iavicoli I, Fontana L, Leso V, Bergamaschi A. The consequences of nanomaterials as endocrine disruptors. Int J Mol Sci. 2013;14:16732–801. https://doi.org/10.3390/ijms140816732.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun H, Kim JD, Choi HC, Lee CW. Antibacterial exercise of CNT-Ag and GO-Ag nanocomposites towards gram-negative and gram-positive micro organism. Bull Korean Chem Soc. 2013;34:3261–4. https://doi.org/10.5012/bkcs.2013.34.11.3261.

    Article 
    CAS 

    Google Scholar
     

  • Egger S, Lehmann RP, Peak MJ, et al. Antimicrobial properties of a novel silver-silica nanocomposite materials. Appl Environ Microbiol. 2009;75:2973–6. https://doi.org/10.1128/AEM.01658-08.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tak YK, Pal S, Naoghare PK, et al. Form-dependent pores and skin penetration of silver nanoparticles: does it actually matter. Sci Rep. 2015. https://doi.org/10.1038/srep16908.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima E, Guerra R, Lara V, Guzmán A. Gold nanoparticles as environment friendly antimicrobial brokers for Escherichia coli and Salmonella typhi. Chem Cent J. 2013. https://doi.org/10.1186/1752-153x-7-11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiwari PM, Vig Okay, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical purposes. Nanomaterials. 2011;1:31–63. https://doi.org/10.3390/nano1010031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Kong Y, Kundu S, et al. Antibacterial actions of gold and silver nanoparticles towards Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol. 2012;1:1. https://doi.org/10.1186/1477-3155-10-19.

    Article 
    CAS 

    Google Scholar
     

  • Cui Y, Zhao Y, Tian Y, et al. The molecular mechanism of motion of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33:2327–33. https://doi.org/10.1016/j.biomaterials.2011.11.057.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azam A, Ahmed AS, Oves M, et al. Antimicrobial exercise of steel oxide nanoparticles towards Gram-positive and Gram-negative micro organism: a comparative examine. Int J Nanomed. 2012;7:6003–9. https://doi.org/10.2147/IJN.S35347.

    Article 
    CAS 

    Google Scholar
     

  • Buzea C, Pacheco II, Robbie Okay. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–71.

    Article 

    Google Scholar
     

  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD. Ultrafine dispersed CuO nanoparticles and their antibacterial exercise. J Exp Nanosci. 2008;3:185–93. https://doi.org/10.1080/17458080802395460.

    Article 
    CAS 

    Google Scholar
     

  • Ramteke C, Chakrabarti T, Sarangi BK, Pandey R. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial exercise. Hindawi Publ Corp J Chem. 2013;2013:1–8. https://doi.org/10.1155/2013/278925.

    Article 
    CAS 

    Google Scholar
     

  • Verma A, Mehata MS. Controllable synthesis of silver nanoparticles utilizing neem leaves and their antimicrobial exercise. J Radiat Res Appl Sci. 2016;9:109–15. https://doi.org/10.1016/j.jrras.2015.11.001.

    Article 
    CAS 

    Google Scholar
     

  • Velmurugan P, Hong S-C, Aravinthan A, et al. Comparability of the bodily traits of green-synthesized and business silver nanoparticles: analysis of antimicrobial and cytotoxic results. Arab J Sci Eng. 2017;42:201–8. https://doi.org/10.1007/s13369-016-2254-8.

    Article 
    CAS 

    Google Scholar
     

  • Panigrahi S, Basu S, Praharaj S, et al. Synthesis and size-selective catalysis by supported gold nanoparticles: examine on heterogeneous and homogeneous catalytic course of. J Phys Chem C. 2007;111:4596–605. https://doi.org/10.1021/jp067554u.

    Article 
    CAS 

    Google Scholar
     

  • Woo Y, Lai DY. Fragrant amino and nitro–amino compounds and their halogenated derivatives. In: Bingham E, Cohrssen B, Powell CH, editors. Patty’s toxicology. Wiley; 2012. https://doi.org/10.1002/0471435139.tox058.pub2.

  • Lim SH, Ahn E-Y, Park Y. Inexperienced synthesis and catalytic exercise of gold nanoparticles synthesized by Artemisia capillaris water extract. Nanoscale Res Lett. 2016;11:474. https://doi.org/10.1186/s11671-016-1694-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rostami-Vartooni A, Nasrollahzadeh M, Alizadeh M. Inexperienced synthesis of perlite supported silver nanoparticles utilizing Hamamelis virginiana leaf extract and investigation of its catalytic exercise for the discount of 4-nitrophenol and Congo crimson. J Alloys Compd. 2016;680:309–14. https://doi.org/10.1016/j.jallcom.2016.04.008.

    Article 
    CAS 

    Google Scholar
     

  • Sharma JK, Akhtar MS, Ameen S, et al. Inexperienced synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized photo voltaic cells purposes. J Alloys Compd. 2015;632:321–5. https://doi.org/10.1016/j.jallcom.2015.01.172.

    Article 
    CAS 

    Google Scholar
     

  • Gopalakrishnan R, Loganathan B, Dinesh S, Raghu Okay. Strategic inexperienced synthesis, characterization and catalytic utility to 4-nitrophenol discount of palladium nanoparticles. J Clust Sci. 2017;28:2123–31. https://doi.org/10.1007/s10876-017-1207-z.

    Article 
    CAS 

    Google Scholar
     

  • Gangula A, Podila R, Rao AM, et al. Catalytic discount of 4-nitrophenol utilizing biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir. 2011;27:15268–74. https://doi.org/10.1021/la2034559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh J, Kukkar P, Sammi H, et al. Enhanced catalytic discount of 4-nitrophenol and congo crimson dye By silver nanoparticles ready from Azadirachta indica leaf extract underneath direct daylight publicity. Half Sci Technol. 2017. https://doi.org/10.1080/02726351.2017.1390512.

    Article 

    Google Scholar
     

  • Yuan CG, Huo C, Gui B, et al. Inexperienced synthesis of silver nanoparticles utilizing Chenopodium aristatum L. stem extract and their catalytic/antibacterial actions. J Clust Sci. 2017;28:1319–33. https://doi.org/10.1007/s10876-016-1147-z.

    Article 
    CAS 

    Google Scholar
     

  • Habibi MH, Rezvani Z. Photocatalytic degradation of an azo textile dye (C.I. Reactive Purple 195 (3BF)) in aqueous answer over copper cobaltite nanocomposite coated on glass by Physician Blade methodology. Spectrochim Acta Half A Mol Biomol Spectrosc. 2015;147:173–7. https://doi.org/10.1016/j.saa.2015.03.077.

    Article 
    CAS 

    Google Scholar
     

  • Carmen Z, Daniel S. Textile natural dyes—traits, polluting results and separation/elimination procedures from industrial effluents—a crucial overview. Natural pollution ten years after the Stockholm conference—environmental and analytical replace. London: InTech; 2012.


    Google Scholar
     

  • Ratna PBS. Air pollution because of artificial dyes toxicity and carcinogenicity research and remediation. Int J Environ Sci. 2012;3:940–55. https://doi.org/10.6088/ijes.2012030133002.

    Article 
    CAS 

    Google Scholar
     

  • Dutta AK, Maji SK, Adhikary B. γ-Fe2O3 nanoparticles: an simply recoverable efficient photo-catalyst for the degradation of rose bengal and methylene blue dyes within the waste-water remedy plant. Mater Res Bull. 2014;49:28–34. https://doi.org/10.1016/j.materresbull.2013.08.024.

    Article 
    CAS 

    Google Scholar
     

  • Gonawala KH, Mehta MJ. Removing of coloration from totally different dye wastewater through the use of ferric oxide as an adsorbent. Int J Eng Res Appl. 2014;4:102–9.


    Google Scholar
     

  • Jyoti Okay, Singh A. Inexperienced synthesis of nanostructured silver particles and their catalytic utility in dye degradation. J Genet Eng Biotechnol. 2016;14:311–7. https://doi.org/10.1016/j.jgeb.2016.09.005.

    Article 

    Google Scholar
     

  • Wesenberg D, Kyriakides I, Agathos SN. White-rot fungi and their enzymes for the remedy of business dye effluents. Biotechnol Adv. 2003;22:161–87. https://doi.org/10.1016/j.biotechadv.2003.08.011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fowsiya J, Madhumitha G, Al-Dhabi NA, Arasu MV. Photocatalytic degradation of Congo crimson utilizing Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B Biol. 2016;162:395–401. https://doi.org/10.1016/j.jphotobiol.2016.07.011.

    Article 
    CAS 

    Google Scholar
     

  • Nakkala JR, Bhagat E, Suchiang Okay, Sadras SR. Comparative examine of antioxidant and catalytic exercise of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J Mater Sci Technol. 2015;31:986–94. https://doi.org/10.1016/j.jmst.2015.07.002.

    Article 

    Google Scholar
     

  • Varadavenkatesan T, Selvaraj R, Vinayagam R. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their utility in catalytic degradation of methyl orange dye. J Mol Liquids. 2016;221:1063–70. https://doi.org/10.1016/j.molliq.2016.06.064.

    Article 
    CAS 

    Google Scholar
     

  • Bhuyan T, Mishra Okay, Khanuja M, et al. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic purposes. Mater Sci Semicond Course of. 2015;32:55–61. https://doi.org/10.1016/j.mssp.2014.12.053.

    Article 
    CAS 

    Google Scholar
     

  • Stan M, Popa A, Toloman D, et al. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized through the use of plant extracts. Mater Sci Semicond Course of. 2015;39:23–9. https://doi.org/10.1016/j.mssp.2015.04.038.

    Article 
    CAS 

    Google Scholar
     

  • Thandapani Okay, Kathiravan M, Namasivayam E, et al. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids inexperienced synthesized utilizing the aqueous leaf extract of Parthenium hysterophorus. Environ Sci Pollut Res. 2017;25:1–12. https://doi.org/10.1007/s11356-017-9177-0.

    Article 
    CAS 

    Google Scholar
     

  • Astruc D. Nanoparticles and catalysis. Weinheim: Wiley; 2008.


    Google Scholar
     

  • Dror I, Baram D, Berkowitz B. Use of nanosized catalysts for transformation of chloro-organic pollution. Environ Sci Technol. 2005;39:1283–90. https://doi.org/10.1021/es0490222.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pradeep T, Anshup. Noble steel nanoparticles for water purification: a crucial assessment. Skinny Stable Movies. 2009;517:6441–78.

    Article 
    CAS 

    Google Scholar
     

  • Tsuda A, Konduru NV. The function of pure processes and floor power of inhaled engineered nanoparticles on aggregation and corona formation. NanoImpact. 2016;2:38–44.

    Article 

    Google Scholar
     

  • Zhang M, Liu Y-Q, Ye B-C. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ utilizing peptide-modified gold nanoparticles. Analyst. 2012;137:601–7. https://doi.org/10.1039/c1an15909g.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta VN, Kumar MA, Kailasa SK. Colorimetric detection of copper in water samples utilizing dopamine dithiocarbamate-functionalized au nanoparticles. Ind Eng Chem Res. 2013;52:4414–20. https://doi.org/10.1021/ie302651f.

    Article 
    CAS 

    Google Scholar
     

  • Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108:1517–49.

    Article 
    CAS 

    Google Scholar
     

  • Aragay G, Pons J, Merkoçi A. Current traits in macro-, micro-, and nanomaterial-based instruments and techniques for heavy-metal detection. Chem Rev. 2011;111:3433–58. https://doi.org/10.1021/cr100383r.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nolan EM, Lippard SJ. Instruments and techniques for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.

    Article 
    CAS 

    Google Scholar
     

  • Ray PC. Dimension and form dependent second order nonlinear optical properties of nanomaterials and their utility in organic and chemical sensing. Chem Rev. 2010;110:5332–65. https://doi.org/10.1021/cr900335q.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annadhasan M, Muthukumarasamyvel T, Sankar Babu VR, Rajendiran N. Inexperienced synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Maintain Chem Eng. 2014;2:887–96. https://doi.org/10.1021/sc400500z.

    Article 
    CAS 

    Google Scholar
     

  • Maiti S, Gadadhar B, Laha JK. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl Nanosci. 2016;6:529–38. https://doi.org/10.1007/s13204-015-0452-4.

    Article 
    CAS 

    Google Scholar
     

  • Karthiga D, Anthony SP. Selective colorimetric sensing of poisonous steel cations by inexperienced synthesized silver nanoparticles over a large pH vary. RSC Adv. 2013;3:16765–74. https://doi.org/10.1039/C3RA42308E.

    Article 
    CAS 

    Google Scholar
     

  • Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles utilizing microbes—a assessment. Colloids Surf B Biointerfaces. 2014;121:474–83.

    Article 
    CAS 

    Google Scholar
     

  • Setua P, Pramanik R, Sarkar S, et al. Synthesis of silver nanoparticle in imidazolium and pyrolidium primarily based ionic liquid reverse micelles: a step ahead in nanostructure inorganic materials in room temperature ionic liquid discipline. J Mol Liq. 2011;162:33–7. https://doi.org/10.1016/j.molliq.2011.05.015.

    Article 
    CAS 

    Google Scholar
     

  • Ge L, Chen L, Guo R. Microstructure and lubrication properties of lamellar liquid crystal in Brij30/[Bmim]PF6/H2O system. Tribol Lett. 2007;28:123–30. https://doi.org/10.1007/s11249-007-9256-3.

    Article 
    CAS 

    Google Scholar
     

  • Obliosca JM, Arellano IHJ, Huang MH, Arco SD. Double layer micellar stabilization of gold nanocrystals by greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Mater Lett. 2010;64:1109–12. https://doi.org/10.1016/j.matlet.2010.02.029.

    Article 
    CAS 

    Google Scholar
     

  • Itoh H, Naka Okay, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid primarily based on the imidazolium cation. J Am Chem Soc. 2004;126:3026–7. https://doi.org/10.1021/ja039895g.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazarus LL, Yang AS-J, Chu S, et al. Stream-focused synthesis of monodisperse gold nanoparticles utilizing ionic liquids on a microfluidic platform. Lab Chip. 2010;10:3377. https://doi.org/10.1039/c0lc00297f.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khare V, Li ZH, Mantion A, et al. Robust anion results on gold nanoparticle formation in ionic liquids. J Mater Chem. 2010;20:1332–9. https://doi.org/10.1039/B917467b.

    Article 
    CAS 

    Google Scholar
     

  • Bhatt AI, Mechler Á, Martin LL, Bond AM. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic results underlying nanoparticle, cluster and nanowire formation. J Mater Chem. 2007;17:2241. https://doi.org/10.1039/b618036a.

    Article 
    CAS 

    Google Scholar
     

  • Raut D, Wankhede Okay, Vaidya V, et al. Copper nanoparticles in ionic liquids: recyclable and environment friendly catalytic system for 1,3-dipolar cycloaddition response. Catal Commun. 2009;10:1240–3. https://doi.org/10.1016/j.catcom.2009.01.027.

    Article 
    CAS 

    Google Scholar
     

  • Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles utilizing the endophytic bacterium Bacillus cereus remoted from Garcinia xanthochymus. Asian Pac J Trop Biomed. 2012;2:953–9. https://doi.org/10.1016/S2221-1691(13)60006-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles utilizing psychrophilic micro organism. Course of Biochem. 2011;46:1800–7. https://doi.org/10.1016/j.procbio.2011.06.008.

    Article 
    CAS 

    Google Scholar
     

  • Korbekandi H, Iravani S, Abbasi S. Optimization of organic synthesis of silver nanoparticles utilizing Lactobacillus casei subsp. casei. J Chem Technol Biotechnol. 2012;87:932–7. https://doi.org/10.1002/jctb.3702.

    Article 
    CAS 

    Google Scholar
     

  • Fu M, Li Q, Solar D, et al. Speedy preparation strategy of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng. 2006;14:114–7. https://doi.org/10.1016/S1004-9541(06)60046-3.

    Article 
    CAS 

    Google Scholar
     

  • Lengke MF, Fleet ME, Southam G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I) thiosulfate and gold(III) chloride complexes. Nano. 2006. https://doi.org/10.1021/es061040r.

    Article 

    Google Scholar
     

  • Southam G, Beveridge TJ. The in vitro formation of placer gold by micro organism. Geochim Cosmochim Acta. 1994;58:4527–30. https://doi.org/10.1016/0016-7037(94)90355-7.

    Article 
    CAS 

    Google Scholar
     

  • Wen L, Lin Z, Gu P, et al. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanoparticle Res. 2009;11:279–88. https://doi.org/10.1007/s11051-008-9378-z.

    Article 
    CAS 

    Google Scholar
     

  • Konishi Y, Tsukiyama T, Tachimi T, et al. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta. 2007;53:186–92. https://doi.org/10.1016/j.electacta.2007.02.073.

    Article 
    CAS 

    Google Scholar
     

  • Du L, Jiang H, Liu X, Wang E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its utility on direct electrochemistry of hemoglobin. Electrochem Commun. 2007;9:1165–70. https://doi.org/10.1016/j.elecom.2007.01.007.

    Article 
    CAS 

    Google Scholar
     

  • Deplanche Okay, Macaskie LE. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng. 2008;99:1055–64. https://doi.org/10.1002/bit.21688.

    Article 
    CAS 

    Google Scholar
     

  • He S, Guo Z, Zhang Y, et al. Biosynthesis of gold nanoparticles utilizing the micro organism Rhodopseudomonas capsulata. Mater Lett. 2007;61:3984–7. https://doi.org/10.1016/j.matlet.2007.01.018.

    Article 
    CAS 

    Google Scholar
     

  • Philipse AP, Maas D. Magnetic colloids from magnetotactic micro organism: chain formation and colloidal stability. Langmuir. 2002;18:9977–84. https://doi.org/10.1021/la0205811.

    Article 
    CAS 

    Google Scholar
     

  • Mann S, Frankel RB, Blakemore RP. Construction, morphology and crystal progress of bacterial magnetite. Nature. 1984;310:405–7. https://doi.org/10.1038/310405a0.

    Article 

    Google Scholar
     

  • Marshall MJ, Beliaev AS, Dohnalkova AC, et al. c-Sort cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol. 2006;4:1324–33. https://doi.org/10.1371/journal.pbio.0040268.

    Article 
    CAS 

    Google Scholar
     

  • Holmes JD, Smith PR, Richardson DJ, et al. Power-dispersive X-ray evaluation of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol. 1995;163:143–7.

    Article 
    CAS 

    Google Scholar
     

  • Ravindra BK, Rajasab AH. A comparative examine on biosynthesis of silver nanoparticles utilizing 4 totally different fungal species. Int J Pharm Pharm Sci. 2014;6(1):372–6.


    Google Scholar
     

  • Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization within the mycelial matrix: a novel organic method to nanoparticle synthesis. Nano Lett. 2001;1:515–9. https://doi.org/10.1021/nl0155274.

    Article 
    CAS 

    Google Scholar
     

  • Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles utilizing the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 2006;47:160–4. https://doi.org/10.1016/j.colsurfb.2005.11.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, et al. Organic synthesis of silver nanoparticles utilizing the fungus Aspergillus flavus. Mater Lett. 2007;61:1413–8. https://doi.org/10.1016/j.matlet.2006.07.042.

    Article 
    CAS 

    Google Scholar
     

  • Vigneshwaran N, Kathe AA, Varadarajan PV, et al. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces. 2006;53:55–9. https://doi.org/10.1016/j.colsurfb.2006.07.014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gade AK, Bonde P, Ingle AP, et al. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy. 2008;2:243–7. https://doi.org/10.1166/jbmb.2008.401.

    Article 

    Google Scholar
     

  • Basavaraja S, Balaji SD, Lagashetty A, et al. Extracellular biosynthesis of silver nanoparticles utilizing the fungus Fusarium semitectum. Mater Res Bull. 2008;43:1164–70. https://doi.org/10.1016/j.materresbull.2007.06.020.

    Article 
    CAS 

    Google Scholar
     

  • Balaji DS, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68:88–92. https://doi.org/10.1016/j.colsurfb.2008.09.022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol. 2009;100:501–4. https://doi.org/10.1016/j.biortech.2008.05.048.

    Article 
    CAS 

    Google Scholar
     

  • Ingle A, Rai M, Gade A, Bawaskar M. Fusarium solani: a novel organic agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res. 2009;11:2079–85. https://doi.org/10.1007/s11051-008-9573-y.

    Article 
    CAS 

    Google Scholar
     

  • Shaligram NS, Bule M, Bhambure R, et al. Biosynthesis of silver nanoparticles utilizing aqueous extract from the compactin producing fungal pressure. Course of Biochem. 2009;44:939–43. https://doi.org/10.1016/j.procbio.2009.04.009.

    Article 
    CAS 

    Google Scholar
     

  • Kathiresan Okay, Manivannan S, Nabeel MA, Dhivya B. Research on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum remoted from coastal mangrove sediment. Colloids Surf B Biointerfaces. 2009;71:133–7. https://doi.org/10.1016/j.colsurfb.2009.01.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birla SS, Tiwari VV, Gade AK, et al. Fabrication of silver nanoparticles by Phoma glomerata and its mixed impact towards Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48:173–9. https://doi.org/10.1111/j.1472-765X.2008.02510.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gajbhiye M, Kesharwani J, Ingle A, et al. Fungus-mediated synthesis of silver nanoparticles and their exercise towards pathogenic fungi together with fluconazole. Nanomed Nanotechnol Biol Med. 2009;5:382–6. https://doi.org/10.1016/j.nano.2009.06.005.

    Article 
    CAS 

    Google Scholar
     

  • Fayaz AM, Balaji Okay, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic impact with antibiotics: a examine towards gram-positive and gram-negative micro organism. Nanomed Nanotechnol Biol Med. 2010. https://doi.org/10.1016/j.nano.2009.04.006.

    Article 

    Google Scholar
     

  • Binupriya AR, Sathishkumar M, Yun SI. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B Biointerfaces. 2010;79:531–4. https://doi.org/10.1016/j.colsurfb.2010.05.021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmad A, Senapati S, Khan MI, et al. Further-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2005;1:47–53. https://doi.org/10.1166/jbn.2005.012.

    Article 
    CAS 

    Google Scholar
     

  • Senapati S, Ahmad A, Khan MI, et al. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small. 2005;1:517–20. https://doi.org/10.1002/smll.200400053.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly method. Int Nano Lett. 2014;4:93. https://doi.org/10.1007/s40089-014-0093-8.

    Article 
    CAS 

    Google Scholar
     

  • Raliya R, Biswas P, Tarafdar JC. TiO2 nanoparticle biosynthesis and its physiological impact on mung bean (Vigna radiata L.). Biotechnol Rep. 2015;5:22–6. https://doi.org/10.1016/j.btre.2014.10.009.

    Article 

    Google Scholar
     

  • Kowshik M, Vogel W, City J, et al. Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater. 2002;14:815–8. https://doi.org/10.1002/1521-4095(20020605)14:11percent3c815:AID-ADMA815percent3e3.0.CO;2-Okay.

    Article 
    CAS 

    Google Scholar
     

  • Mourato A, Gadanho M, Lino AR, Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011;1:1. https://doi.org/10.1155/2011/546074.

    Article 
    CAS 

    Google Scholar
     

  • Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles utilizing aloe vera plant extract. Biotechnol Prog. 2006. https://doi.org/10.1021/bp0501423.

    Article 
    PubMed 

    Google Scholar
     

  • Krishnaraj C, Jagan EG, Rajasekar S, et al. Synthesis of silver nanoparticles utilizing Acalypha indica leaf extracts and its antibacterial exercise towards water borne pathogens. Colloids Surf B Biointerfaces. 2010;1:1. https://doi.org/10.1016/j.colsurfb.2009.10.008.

    Article 
    CAS 

    Google Scholar
     

  • Kasthuri J, Veerapandian S, Rajendiran N. Organic synthesis of silver and gold nanoparticles utilizing apiin as lowering agent. Colloids Surf B Biointerfaces. 2009;68:55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armendariz V, Herrera I, Peralta-Videa JR, et al. Dimension managed gold nanoparticle formation by Avena sativa biomass: use of crops in nanobiotechnology. J Nanoparticle Res. 2004;6:377–82. https://doi.org/10.1007/s11051-004-0741-4.

    Article 
    CAS 

    Google Scholar
     

  • Shankar SS, Rai A, Ahmad A, Sastry M. Speedy synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles utilizing Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;1:1. https://doi.org/10.1016/j.jcis.2004.03.003.

    Article 
    CAS 

    Google Scholar
     

  • Mondal S, Roy N, Laskar RA, et al. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles utilizing aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surfaces B Biointerfaces. 2011;82:497–504. https://doi.org/10.1016/j.colsurfb.2010.10.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haverkamp RG, Marshall AT. The mechanism of steel nanoparticle formation in crops: limits on accumulation. J Nanoparticle Res. 2009;11:1453–63. https://doi.org/10.1007/s11051-008-9533-6.

    Article 
    CAS 

    Google Scholar
     

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle dimension. Colloids Surf B Biointerfaces. 2011;82:152–9. https://doi.org/10.1016/j.colsurfb.2010.08.036.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62:4588–90. https://doi.org/10.1016/j.matlet.2008.08.044.

    Article 
    CAS 

    Google Scholar
     

  • Shankar SS, Rai A, Ahmad A, Sastry M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential utility in infrared-absorbing optical coatings. Chem Mater. 2005;17:566–72. https://doi.org/10.1021/cm048292g.

    Article 
    CAS 

    Google Scholar
     

  • Jha AK, Prasad Okay. Inexperienced synthesis of silver nanoparticles utilizing cycas leaf. Int J Inexperienced Nanotechnol Phys Chem. 2010;1:110–7. https://doi.org/10.1080/19430871003684572.

    Article 

    Google Scholar
     

  • Music JY, Kim BS. Organic synthesis of bimetallic Au/Ag nanoparticles utilizing Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng. 2008;25:808–11. https://doi.org/10.1007/s11814-008-0133-z.

    Article 
    CAS 

    Google Scholar
     

  • Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologically synthesized utilizing tamarind leaf extract and potential utility in vapor sensing. Synth React Inorg Metallic Org Nano-Metallic Chem. 2005;35:19–26. https://doi.org/10.1081/SIM-200047527.

    Article 
    CAS 

    Google Scholar
     

  • Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju Okay. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles by way of “inexperienced method”. Colloids Surf A Physicochem Eng Asp. 2010;367:31–40. https://doi.org/10.1016/j.colsurfa.2010.06.013.

    Article 
    CAS 

    Google Scholar
     

  • Dubey M, Bhadauria S, Kushwah BS. Inexperienced synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Biostruct. 2009;4:537–43.


    Google Scholar
     

  • Veerasamy R, Xin TZ, Gunasagaran S, et al. Biosynthesis of silver nanoparticles utilizing mangosteen leaf extract and analysis of their antimicrobial actions. J Saudi Chem Soc. 2010. https://doi.org/10.1016/j.jscs.2010.06.004.

    Article 

    Google Scholar
     

  • Jia L, Zhang Q, Li Q, Music H. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: lengthy lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology. 2009. https://doi.org/10.1088/0957-4484/20/38/385601.

    Article 
    PubMed 

    Google Scholar
     

  • Raghunandan D, Bedre MD, Basavaraja S, et al. Speedy biosynthesis of irregular formed gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) answer. Colloids Surf B Biointerfaces. 2010;79:235–40. https://doi.org/10.1016/j.colsurfb.2010.04.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bar H, Bhui DK, Sahoo GP, et al. Inexperienced synthesis of silver nanoparticles utilizing latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp. 2009. https://doi.org/10.1016/j.colsurfa.2009.02.008.

    Article 

    Google Scholar
     

  • Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP. Inexperienced synthesis of silver nanoparticles utilizing cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym. 2013;98:290–4. https://doi.org/10.1016/j.carbpol.2013.05.038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa sprouts: a pure supply for the synthesis of silver nanoparticles. Langmuir. 2003. https://doi.org/10.1021/la020835i.

    Article 

    Google Scholar
     

  • Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and progress of au nanoparticles inside dwell alfalfa crops. Nano Lett. 2002;2:397–401. https://doi.org/10.1021/nl015673+.

    Article 
    CAS 

    Google Scholar
     

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, et al. Gold nanoparticles obtained by bio-precipitation from gold(III) options. J Nanoparticle Res. 1999;1:397–404. https://doi.org/10.1023/A:1010008915465.

    Article 
    CAS 

    Google Scholar
     

  • Parashar UK, Saxena PS. Bioinspired synthesis of silver nanoparticles. J Nanomater. 2009;4:159–66.


    Google Scholar
     

  • Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA. Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A Mater Sci Course of. 2008;91:241–6.

    Article 
    CAS 

    Google Scholar
     

  • Singh J, Singh N, Rathi A, et al. Facile method to synthesize and characterization of silver nanoparticles through the use of mulberry leaves extract in aqueous medium and its utility in antimicrobial exercise. J Nanostructures. 2017;7:134–40. https://doi.org/10.22052/jns.2017.02.007.

    Article 
    CAS 

    Google Scholar
     

  • Santhoshkumar T, Rahuman AA, Rajakumar G, et al. Synthesis of silver nanoparticles utilizing Nelumbo nucifera leaf extract and its larvicidal exercise towards malaria and filariasis vectors. Parasitol Res. 2011;108:693–702. https://doi.org/10.1007/s00436-010-2115-4.

    Article 
    PubMed 

    Google Scholar
     

  • Singh J, Mehta A, Rawat M, Basu S. Inexperienced synthesis of silver nanoparticles utilizing solar dried tulsi leaves and its catalytic utility for 4-nitrophenol discount. J Environ Chem Eng. 2018;6:1468–74. https://doi.org/10.1016/j.jece.2018.01.054.

    Article 
    CAS 

    Google Scholar
     

  • Philip D, Unni C. Extracellular biosynthesis of gold and silver nanoparticles utilizing Krishna tulsi (Ocimum sanctum) leaf. Phys E Low Dimens Syst Nanostructures. 2011;43:1318–22. https://doi.org/10.1016/j.physe.2010.10.006.

    Article 
    CAS 

    Google Scholar
     

  • Ghodake GS, Deshpande NG, Lee YP, Jin ES. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces. 2010;75:584–9. https://doi.org/10.1016/j.colsurfb.2009.09.040.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghunandan D, Basavaraja S, Mahesh B, et al. Biosynthesis of secure polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. NanoBiotechnology. 2009;5:34–41. https://doi.org/10.1007/s12030-009-9030-8.

    Article 
    CAS 

    Google Scholar
     

  • Qu J, Luo C, Hou J. Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) crops. IET Micro Nano Lett. 2011;6:174–6.

    Article 
    CAS 

    Google Scholar
     

  • Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Course of Biochem. 2010;45:1065–71. https://doi.org/10.1016/j.procbio.2010.03.024.

    Article 
    CAS 

    Google Scholar
     

  • Ankamwar B. Biosynthesis of gold nanoparticles (green-gold) utilizing leaf extract of Terminalia catappa. J Chem. 2010;7:1334–9. https://doi.org/10.1155/2010/745120.

    Article 
    CAS 

    Google Scholar
     

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME et al. “Inexperienced” nanotechnologies: synthesis of steel nanoparticles utilizing crops. Acta Naturae. 2014;6:35–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudhasree S, Shakila Banu A, Brindha P, Kurian GA. Synthesis of nickel nanoparticles by chemical and inexperienced route and their comparability in respect to organic impact and toxicity. Toxicol Environ Chem. 2014;96:743–54.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles