[HTML payload içeriği buraya]
27.3 C
Jakarta
Sunday, November 24, 2024

Calcium phosphate coating enhances osteointegration of soften electrowritten scaffold by regulating macrophage polarization | Journal of Nanobiotechnology


  • Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration methods: engineered scaffolds, bioactive molecules and stem cells present stage and future views. Biomaterials. 2018;180:143–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Present advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8: e1801106.

    Article 
    PubMed 

    Google Scholar
     

  • Sadowska JM, Ginebra MP. Irritation and biomaterials: position of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8:9404–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold methods for modulating immune microenvironment throughout bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020;108: 110411.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung L, Maestas DR Jr, Housseau F, Elisseeff JH. Key gamers within the immune response to biomaterial scaffolds for regenerative drugs. Adv Drug Deliv Rev. 2017;114:184–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao DW, Du CM, Zuo KQ, Zhao YX, Xu XQ, Li YB, Tian S, Yang HR, Lu YP, Cheng L, Xiao GY. Calcium-zinc phosphate chemical conversion coating facilitates the osteointegration of biodegradable zinc alloy implants by orchestrating macrophage phenotype. Adv Healthc Mater. 2023;12: e2202537.

    Article 
    PubMed 

    Google Scholar
     

  • Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev. 2017;114:193–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oishi Y, Manabe I. Macrophages in irritation, restore and regeneration. Int Immunol. 2018;30:511–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al. Macrophage activation and polarization: nomenclature and experimental pointers. Immunity. 2014;41:14–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Ok, Niu W, Lei B, Boccaccini AR. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 2021;133:168–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, Wu J, Wu S, Liu X, Zheng Y, et al. Sequential activation of heterogeneous macrophage phenotypes is crucial for biomaterials-induced bone regeneration. Biomaterials. 2021;276: 121038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Chen M, Luo J, Zhao H, Zhou X, Gu Q, Yang H, Zhu X, Cui W, Shi Q. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials. 2021;276: 121037.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological construction of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021;129:148–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Jiang X, Li H, Gelinsky M, Gu Z. Tailoring supplies for modulation of macrophage destiny. Adv Mater. 2021;33: e2004172.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial floor properties. Biomaterials. 2020;243: 119920.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin SS, He DQ, Luo D, Wang Y, Yu M, Guan B, Fu Y, Li ZX, Zhang T, Zhou YH, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to advertise endogenous bone regeneration. ACS Nano. 2019;13:6581–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasconcelos DP, Costa M, Amaral IF, Barbosa MA, Águas AP, Barbosa JN. Modulation of the inflammatory response to chitosan by means of M2 macrophage polarization utilizing pro-resolution mediators. Biomaterials. 2015;37:116–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Z, Ma C, Rong X, Zou S, Liu X. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl Mater Interfaces. 2018;10:2377–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bessa-Gonçalves M, Ribeiro-Machado C, Costa M, Ribeiro CC, Barbosa JN, Barbosa MA, Santos SG. Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization in direction of M2 phenotype. Acta Biomater. 2023;155:667–83.

    Article 
    PubMed 

    Google Scholar
     

  • Wei C, Cai L, Sonawane B, Wang S, Dong J. Excessive-precision versatile fabrication of tissue engineering scaffolds utilizing distinct polymers. Biofabrication. 2012;4: 025009.

    Article 
    PubMed 

    Google Scholar
     

  • Gao Q, Xie C, Wang P, Xie M, Li H, Solar A, Fu J, He Y. 3D printed multi-scale scaffolds with ultrafine fibers for offering wonderful biocompatibility. Mater Sci Eng C Mater Biol Appl. 2020;107: 110269.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daghrery A, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Unveiling the potential of soften electrowriting in regenerative dental drugs. Acta Biomater. 2023;156:88–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Zeng Y, Liu S, Zhou M, Fang H, Wang Z, Solar J. ZIF-8 induced hydroxyapatite-like crystals enabled superior osteogenic skill of MEW printing PCL scaffolds. J Nanobiotechnology. 2023;21:264.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paxton NC, Ho SWK, Tuten BT, Lipton-Duffin J, Woodruff MA. Degradation of soften electrowritten PCL scaffolds following soften processing and plasma floor therapy. Macromol Fast Commun. 2021;42: e2100433.

    Article 
    PubMed 

    Google Scholar
     

  • Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, et al. 3D high-precision soften electro written polycaprolactone modified with yeast derived peptides for wound therapeutic. Biomater Adv. 2023;149: 213361.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Wang H, Xiong J, Li J, Miao X, Lan X, Liu X, Wang W, Cai N, Tang Y. Fabrication and in vitro analysis of PCL/gelatin hierarchical scaffolds primarily based on soften electrospinning writing and resolution electrospinning for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;128: 112287.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santschi MXT, Huber S, Bujalka J, Imhof N, Leunig M, Ferguson SJ. Mechanical and organic analysis of melt-electrowritten polycaprolactone scaffolds for acetabular labrum restoration. Cells. 2022;11:3450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daghrery A, Ferreira JA, Xu J, Golafshan N, Kaigler D, Bhaduri SB, Malda J, Castilho M, Bottino MC. Tissue-specific soften electrowritten polymeric scaffolds for coordinated regeneration of sentimental and arduous periodontal tissues. Bioact Mater. 2023;19:268–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Afghah F, Iyison NB, Nadernezhad A, Midi A, Sen O, Saner Okan B, Culha M, Koc B. 3D fiber bolstered hydrogel scaffolds by soften electrowriting and gel casting as a hybrid design for wound therapeutic. Adv Healthc Mater. 2022;11: e2102068.

    Article 
    PubMed 

    Google Scholar
     

  • Xiao X, Wu G, Zhou H, Qian Ok, Hu J. Preparation and property analysis of conductive hydrogel utilizing poly (vinyl alcohol)/polyethylene glycol/graphene oxide for human electrocardiogram acquisition. Polymers (Basel). 2017;9:259.

    Article 
    PubMed 

    Google Scholar
     

  • Meng J, Boschetto F, Yagi S, Marin E, Adachi T, Chen X, Pezzotti G, Sakurai S, Sasaki S, Aoki T, et al. Enhancing the bioactivity of soften electrowritten PLLA scaffold by handy, inexperienced, and efficient hydrophilic floor modification. Mater Sci Eng C Mater Biol Appl. 2022;135: 112686.

    PubMed 

    Google Scholar
     

  • Darroch C, Asaro GA, Gréant C, Suku M, Pien N, van Vlierberghe S, Monaghan MG. Soften electrowriting of a biocompatible photo-crosslinkable poly(D, L-lactic acid)/poly(ε-caprolactone)-based materials with tunable mechanical and functionalization properties. J Biomed Mater Res A. 2023;111:851–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kade JC, Dalton PD. Polymers for soften electrowriting. Adv Healthc Mater. 2021;10: e2001232.

    Article 
    PubMed 

    Google Scholar
     

  • Bharadwaz A, Jayasuriya AC. Current developments within the utility of broadly used pure and artificial polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110: 110698.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Zhou Y, Lin X, Li H. Macrophage polarization associated to biomimetic calcium phosphate coatings: a preliminary examine. Supplies (Basel). 2022;16:332.

    Article 
    PubMed 

    Google Scholar
     

  • Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based supplies. Dent Mater. 2019;35:3–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaquette C, Ivanovski S, Hamlet SM, Hutmacher DW. Impact of tradition situations and calcium phosphate coating on ectopic bone formation. Biomaterials. 2013;34:5538–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daghrery A, Ferreira JA, de Souza Araújo IJ, Clarkson BH, Eckert GJ, Bhaduri SB, Malda J, Bottino MC. A extremely ordered, nanostructured fluorinated CaP-coated soften electrowritten scaffold for periodontal tissue regeneration. Adv Healthc Mater. 2021;10: e2101152.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nandakumar A, Yang L, Habibovic P, van Blitterswijk C. Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir. 2010;26:7380–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seyedjafari E, Soleimani M, Ghaemi N, Shabani I. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers improve osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromol. 2010;11:3118–25.

    Article 
    CAS 

    Google Scholar
     

  • Iwasaki A, Medzhitov R. Management of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in improvement, homeostasis and illness. Nature. 2013;496:445–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Bai J, Lu M, Huang C, Geng D, Chen G, Wang L, Qi J, Cui W, Deng L. Engineering immunomodulatory and osteoinductive implant surfaces by way of mussel adhesion-mediated ion coordination and molecular clicking. Nat Commun. 2022;13:160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokubo T, Takadama H. How helpful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel mixed with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to restore bone defects by way of osteogenesis, angiogenesis and immunomodulation. Theranostics. 2020;10:725–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi N, Abdal-Hay A, Hamlet S, Graham E, Ivanovski S. Results of gradient and offset architectures on the mechanical and organic properties of 3-D soften electrowritten (MEW) scaffolds. ACS Biomater Sci Eng. 2019;5:3448–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little U, Buchanan F, Harkin-Jones E, Graham B, Fox B, Boyd A, Meenan B, Dickson G. Floor modification of poly(epsilon-caprolactone) utilizing a dielectric barrier discharge in atmospheric strain glow discharge mode. Acta Biomater. 2009;5:2025–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser floor modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering functions. Biomaterials. 2005;26:763–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samavedi S, Olsen Horton C, Guelcher SA, Goldstein AS, Whittington AR. Fabrication of a mannequin repeatedly graded co-electrospun mesh for regeneration of the ligament-bone interface. Acta Biomater. 2011;7:4131–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, You R, Yan Ok, Lu Z, Fan Q, Li X, Wang D. Silk as templates for hydroxyapatite biomineralization: a comparative examine of Bombyx mori and Antheraea pernyi silkworm silks. Int J Biol Macromol. 2020;164:2842–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Tian M, Li X, Hou J, Chen S, Yang G, Liu X, Zhou S. A hierarchical-structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive capabilities for enhanced alveolar bone regeneration. Adv Healthc Mater. 2022;11: e2102236.

    Article 
    PubMed 

    Google Scholar
     

  • Bao M, Xie J, Huck WTS. Current advances in engineering the stem cell microniche in 3D. Adv Sci (Weinh). 2018;5:1800448.

    Article 
    PubMed 

    Google Scholar
     

  • Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on supplies designed for physique implants. Biotechnol Adv. 2011;29:739–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Cao Y, Jing L, Chen S, Leng B, Yang X, Wu Z, Bian J, Banjerdpongchai R, Poofery J, Huang D. Three-Dimensional RAW264.7 cell mannequin on electrohydrodynamic printed poly(ε-Caprolactone) scaffolds for in vitro examine of anti-inflammatory compounds. ACS Appl Bio Mater. 2021;4:7967–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang G, Liu Ok, Wang T, Hu X, Wang J, Gao Z, Lei W, Feng Y, Tao TH. In situ regulation of macrophage polarization to reinforce osseointegration underneath diabetic situations utilizing injectable silk/sitagliptin gel scaffolds. Adv Sci (Weinh). 2021;8:2002328.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang ZZ, Niu YM, Tian XJ, Yu N, Yin XY, Xing Z, Li YR, Dong L, Wang CM. Switching on and off macrophages by a “bridge-burning” coating improves bone-implant integration underneath osteoporosis. Adv Funct Mater. 2021;31:2007408.

    Article 
    CAS 

    Google Scholar
     

  • Lv L, Xie Y, Li Ok, Hu T, Lu X, Cao Y, Zheng X. Unveiling the mechanism of floor hydrophilicity-modulated macrophage polarization. Adv Healthc Mater. 2018;7: e1800675.

    Article 
    PubMed 

    Google Scholar
     

  • Liu W, Li J, Cheng M, Wang Q, Yeung KWK, Chu PK, Zhang X. Zinc-modified sulfonated polyetheretherketone floor with immunomodulatory operate for guiding cell destiny and bone regeneration. Adv Sci (Weinh). 2018;5:1800749.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao DW, Liu C, Zuo KQ, Su P, Li LB, Xiao GY, Cheng L. Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chem Eng J. 2021;408:127362.

    Article 
    CAS 

    Google Scholar
     

  • Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, Annabi N, Abdi R, Dokmeci MR, Vrana NE, et al. Integrin-mediated interactions management macrophage polarization in 3D hydrogels. Adv Healthc Mater. 2017;6:1700289.

    Article 

    Google Scholar
     

  • Wang WB, Li JT, Hui Y, Shi J, Wang XY, Yan SG. Mixture of pseudoephedrine and emodin ameliorates LPS-induced acute lung damage by regulating macrophage M1/M2 polarization by means of the VIP/cAMP/PKA pathway. Chin Med. 2022;17:19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Li Q, Gui L, Deng Y, Wang L, Jiao J, Hu Y, Lan X, Hou J, Li Y, Lu D. Sequential gastrodin launch PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater. 2023;19:24–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Sadowska JM, Wei F, Guo J, Guillem-Marti J, Lin Z, Ginebra MP, Xiao Y. The impact of biomimetic calcium poor hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune response and osteogenesis. Acta Biomater. 2019;96:605–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Xu F, Dai F, Deng T, Ai Y, Xu Z, He C, Ai F, Tune L. Hydrophilic surface-modified 3D printed versatile scaffolds with excessive ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomater Sci. 2023;11:3976–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahon OR, Browe DC, Gonzalez-Fernandez T, Pitacco P, Whelan IT, Von Euw S, Hobbs C, Nicolosi V, Cunningham KT, Mills KHG, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent method. Biomaterials. 2020;239: 119833.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Liang H, Liu X, Wu J, Yang C, Wong TM, Kwan KYH, Cheung KMC, Wu S, Yeung KWK. Regulation of macrophage polarization by means of floor topography design to facilitate implant-to-bone osteointegration. Sci Adv. 2021;7:6654.

    Article 

    Google Scholar
     

  • Wang Y, Wang J, Gao R, Liu X, Feng Z, Zhang C, Huang P, Dong A, Kong D, Wang W. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration by way of macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022;285: 121538.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su N, Villicana C, Barati D, Freeman P, Luo Y, Yang F. Stem cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect mannequin. Adv Mater. 2023;35:2208781.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles