Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration methods: engineered scaffolds, bioactive molecules and stem cells present stage and future views. Biomaterials. 2018;180:143–62.
Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Present advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8: e1801106.
Sadowska JM, Ginebra MP. Irritation and biomaterials: position of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8:9404–27.
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold methods for modulating immune microenvironment throughout bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020;108: 110411.
Chung L, Maestas DR Jr, Housseau F, Elisseeff JH. Key gamers within the immune response to biomaterial scaffolds for regenerative drugs. Adv Drug Deliv Rev. 2017;114:184–92.
Zhao DW, Du CM, Zuo KQ, Zhao YX, Xu XQ, Li YB, Tian S, Yang HR, Lu YP, Cheng L, Xiao GY. Calcium-zinc phosphate chemical conversion coating facilitates the osteointegration of biodegradable zinc alloy implants by orchestrating macrophage phenotype. Adv Healthc Mater. 2023;12: e2202537.
Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev. 2017;114:193–205.
Oishi Y, Manabe I. Macrophages in irritation, restore and regeneration. Int Immunol. 2018;30:511–28.
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al. Macrophage activation and polarization: nomenclature and experimental pointers. Immunity. 2014;41:14–20.
Zheng Ok, Niu W, Lei B, Boccaccini AR. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater. 2021;133:168–86.
Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, Wu J, Wu S, Liu X, Zheng Y, et al. Sequential activation of heterogeneous macrophage phenotypes is crucial for biomaterials-induced bone regeneration. Biomaterials. 2021;276: 121038.
Liu X, Chen M, Luo J, Zhao H, Zhou X, Gu Q, Yang H, Zhu X, Cui W, Shi Q. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials. 2021;276: 121037.
Jin S, Yang R, Chu C, Hu C, Zou Q, Li Y, Zuo Y, Man Y, Li J. Topological construction of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater. 2021;129:148–58.
Li J, Jiang X, Li H, Gelinsky M, Gu Z. Tailoring supplies for modulation of macrophage destiny. Adv Mater. 2021;33: e2004172.
Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial floor properties. Biomaterials. 2020;243: 119920.
Jin SS, He DQ, Luo D, Wang Y, Yu M, Guan B, Fu Y, Li ZX, Zhang T, Zhou YH, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to advertise endogenous bone regeneration. ACS Nano. 2019;13:6581–95.
Vasconcelos DP, Costa M, Amaral IF, Barbosa MA, Águas AP, Barbosa JN. Modulation of the inflammatory response to chitosan by means of M2 macrophage polarization utilizing pro-resolution mediators. Biomaterials. 2015;37:116–23.
Hu Z, Ma C, Rong X, Zou S, Liu X. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl Mater Interfaces. 2018;10:2377–90.
Bessa-Gonçalves M, Ribeiro-Machado C, Costa M, Ribeiro CC, Barbosa JN, Barbosa MA, Santos SG. Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization in direction of M2 phenotype. Acta Biomater. 2023;155:667–83.
Wei C, Cai L, Sonawane B, Wang S, Dong J. Excessive-precision versatile fabrication of tissue engineering scaffolds utilizing distinct polymers. Biofabrication. 2012;4: 025009.
Gao Q, Xie C, Wang P, Xie M, Li H, Solar A, Fu J, He Y. 3D printed multi-scale scaffolds with ultrafine fibers for offering wonderful biocompatibility. Mater Sci Eng C Mater Biol Appl. 2020;107: 110269.
Daghrery A, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Unveiling the potential of soften electrowriting in regenerative dental drugs. Acta Biomater. 2023;156:88–109.
Wang B, Zeng Y, Liu S, Zhou M, Fang H, Wang Z, Solar J. ZIF-8 induced hydroxyapatite-like crystals enabled superior osteogenic skill of MEW printing PCL scaffolds. J Nanobiotechnology. 2023;21:264.
Paxton NC, Ho SWK, Tuten BT, Lipton-Duffin J, Woodruff MA. Degradation of soften electrowritten PCL scaffolds following soften processing and plasma floor therapy. Macromol Fast Commun. 2021;42: e2100433.
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, et al. 3D high-precision soften electro written polycaprolactone modified with yeast derived peptides for wound therapeutic. Biomater Adv. 2023;149: 213361.
Wang Z, Wang H, Xiong J, Li J, Miao X, Lan X, Liu X, Wang W, Cai N, Tang Y. Fabrication and in vitro analysis of PCL/gelatin hierarchical scaffolds primarily based on soften electrospinning writing and resolution electrospinning for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;128: 112287.
Santschi MXT, Huber S, Bujalka J, Imhof N, Leunig M, Ferguson SJ. Mechanical and organic analysis of melt-electrowritten polycaprolactone scaffolds for acetabular labrum restoration. Cells. 2022;11:3450.
Daghrery A, Ferreira JA, Xu J, Golafshan N, Kaigler D, Bhaduri SB, Malda J, Castilho M, Bottino MC. Tissue-specific soften electrowritten polymeric scaffolds for coordinated regeneration of sentimental and arduous periodontal tissues. Bioact Mater. 2023;19:268–81.
Afghah F, Iyison NB, Nadernezhad A, Midi A, Sen O, Saner Okan B, Culha M, Koc B. 3D fiber bolstered hydrogel scaffolds by soften electrowriting and gel casting as a hybrid design for wound therapeutic. Adv Healthc Mater. 2022;11: e2102068.
Xiao X, Wu G, Zhou H, Qian Ok, Hu J. Preparation and property analysis of conductive hydrogel utilizing poly (vinyl alcohol)/polyethylene glycol/graphene oxide for human electrocardiogram acquisition. Polymers (Basel). 2017;9:259.
Meng J, Boschetto F, Yagi S, Marin E, Adachi T, Chen X, Pezzotti G, Sakurai S, Sasaki S, Aoki T, et al. Enhancing the bioactivity of soften electrowritten PLLA scaffold by handy, inexperienced, and efficient hydrophilic floor modification. Mater Sci Eng C Mater Biol Appl. 2022;135: 112686.
Darroch C, Asaro GA, Gréant C, Suku M, Pien N, van Vlierberghe S, Monaghan MG. Soften electrowriting of a biocompatible photo-crosslinkable poly(D, L-lactic acid)/poly(ε-caprolactone)-based materials with tunable mechanical and functionalization properties. J Biomed Mater Res A. 2023;111:851–62.
Kade JC, Dalton PD. Polymers for soften electrowriting. Adv Healthc Mater. 2021;10: e2001232.
Bharadwaz A, Jayasuriya AC. Current developments within the utility of broadly used pure and artificial polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110: 110698.
Chen J, Zhou Y, Lin X, Li H. Macrophage polarization associated to biomimetic calcium phosphate coatings: a preliminary examine. Supplies (Basel). 2022;16:332.
Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based supplies. Dent Mater. 2019;35:3–14.
Vaquette C, Ivanovski S, Hamlet SM, Hutmacher DW. Impact of tradition situations and calcium phosphate coating on ectopic bone formation. Biomaterials. 2013;34:5538–51.
Daghrery A, Ferreira JA, de Souza Araújo IJ, Clarkson BH, Eckert GJ, Bhaduri SB, Malda J, Bottino MC. A extremely ordered, nanostructured fluorinated CaP-coated soften electrowritten scaffold for periodontal tissue regeneration. Adv Healthc Mater. 2021;10: e2101152.
Nandakumar A, Yang L, Habibovic P, van Blitterswijk C. Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir. 2010;26:7380–7.
Seyedjafari E, Soleimani M, Ghaemi N, Shabani I. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers improve osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromol. 2010;11:3118–25.
Iwasaki A, Medzhitov R. Management of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.
Wynn TA, Chawla A, Pollard JW. Macrophage biology in improvement, homeostasis and illness. Nature. 2013;496:445–55.
Wang T, Bai J, Lu M, Huang C, Geng D, Chen G, Wang L, Qi J, Cui W, Deng L. Engineering immunomodulatory and osteoinductive implant surfaces by way of mussel adhesion-mediated ion coordination and molecular clicking. Nat Commun. 2022;13:160.
Kokubo T, Takadama H. How helpful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.
Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel mixed with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to restore bone defects by way of osteogenesis, angiogenesis and immunomodulation. Theranostics. 2020;10:725–40.
Abbasi N, Abdal-Hay A, Hamlet S, Graham E, Ivanovski S. Results of gradient and offset architectures on the mechanical and organic properties of 3-D soften electrowritten (MEW) scaffolds. ACS Biomater Sci Eng. 2019;5:3448–61.
Little U, Buchanan F, Harkin-Jones E, Graham B, Fox B, Boyd A, Meenan B, Dickson G. Floor modification of poly(epsilon-caprolactone) utilizing a dielectric barrier discharge in atmospheric strain glow discharge mode. Acta Biomater. 2009;5:2025–32.
Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser floor modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering functions. Biomaterials. 2005;26:763–9.
Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6:2028–34.
Samavedi S, Olsen Horton C, Guelcher SA, Goldstein AS, Whittington AR. Fabrication of a mannequin repeatedly graded co-electrospun mesh for regeneration of the ligament-bone interface. Acta Biomater. 2011;7:4131–8.
Zhang H, You R, Yan Ok, Lu Z, Fan Q, Li X, Wang D. Silk as templates for hydroxyapatite biomineralization: a comparative examine of Bombyx mori and Antheraea pernyi silkworm silks. Int J Biol Macromol. 2020;164:2842–50.
He Y, Tian M, Li X, Hou J, Chen S, Yang G, Liu X, Zhou S. A hierarchical-structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive capabilities for enhanced alveolar bone regeneration. Adv Healthc Mater. 2022;11: e2102236.
Bao M, Xie J, Huck WTS. Current advances in engineering the stem cell microniche in 3D. Adv Sci (Weinh). 2018;5:1800448.
Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on supplies designed for physique implants. Biotechnol Adv. 2011;29:739–67.
Wang X, Cao Y, Jing L, Chen S, Leng B, Yang X, Wu Z, Bian J, Banjerdpongchai R, Poofery J, Huang D. Three-Dimensional RAW264.7 cell mannequin on electrohydrodynamic printed poly(ε-Caprolactone) scaffolds for in vitro examine of anti-inflammatory compounds. ACS Appl Bio Mater. 2021;4:7967–78.
Xiang G, Liu Ok, Wang T, Hu X, Wang J, Gao Z, Lei W, Feng Y, Tao TH. In situ regulation of macrophage polarization to reinforce osseointegration underneath diabetic situations utilizing injectable silk/sitagliptin gel scaffolds. Adv Sci (Weinh). 2021;8:2002328.
Wang ZZ, Niu YM, Tian XJ, Yu N, Yin XY, Xing Z, Li YR, Dong L, Wang CM. Switching on and off macrophages by a “bridge-burning” coating improves bone-implant integration underneath osteoporosis. Adv Funct Mater. 2021;31:2007408.
Lv L, Xie Y, Li Ok, Hu T, Lu X, Cao Y, Zheng X. Unveiling the mechanism of floor hydrophilicity-modulated macrophage polarization. Adv Healthc Mater. 2018;7: e1800675.
Liu W, Li J, Cheng M, Wang Q, Yeung KWK, Chu PK, Zhang X. Zinc-modified sulfonated polyetheretherketone floor with immunomodulatory operate for guiding cell destiny and bone regeneration. Adv Sci (Weinh). 2018;5:1800749.
Zhao DW, Liu C, Zuo KQ, Su P, Li LB, Xiao GY, Cheng L. Strontium-zinc phosphate chemical conversion coating improves the osseointegration of titanium implants by regulating macrophage polarization. Chem Eng J. 2021;408:127362.
Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, Annabi N, Abdi R, Dokmeci MR, Vrana NE, et al. Integrin-mediated interactions management macrophage polarization in 3D hydrogels. Adv Healthc Mater. 2017;6:1700289.
Wang WB, Li JT, Hui Y, Shi J, Wang XY, Yan SG. Mixture of pseudoephedrine and emodin ameliorates LPS-induced acute lung damage by regulating macrophage M1/M2 polarization by means of the VIP/cAMP/PKA pathway. Chin Med. 2022;17:19.
Li L, Li Q, Gui L, Deng Y, Wang L, Jiao J, Hu Y, Lan X, Hou J, Li Y, Lu D. Sequential gastrodin launch PU/n-HA composite scaffolds reprogram macrophages for improved osteogenesis and angiogenesis. Bioact Mater. 2023;19:24–37.
Sadowska JM, Wei F, Guo J, Guillem-Marti J, Lin Z, Ginebra MP, Xiao Y. The impact of biomimetic calcium poor hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune response and osteogenesis. Acta Biomater. 2019;96:605–18.
Li W, Xu F, Dai F, Deng T, Ai Y, Xu Z, He C, Ai F, Tune L. Hydrophilic surface-modified 3D printed versatile scaffolds with excessive ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomater Sci. 2023;11:3976–97.
Mahon OR, Browe DC, Gonzalez-Fernandez T, Pitacco P, Whelan IT, Von Euw S, Hobbs C, Nicolosi V, Cunningham KT, Mills KHG, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent method. Biomaterials. 2020;239: 119833.
Zhu Y, Liang H, Liu X, Wu J, Yang C, Wong TM, Kwan KYH, Cheung KMC, Wu S, Yeung KWK. Regulation of macrophage polarization by means of floor topography design to facilitate implant-to-bone osteointegration. Sci Adv. 2021;7:6654.
Wang Y, Wang J, Gao R, Liu X, Feng Z, Zhang C, Huang P, Dong A, Kong D, Wang W. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration by way of macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022;285: 121538.
Su N, Villicana C, Barati D, Freeman P, Luo Y, Yang F. Stem cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect mannequin. Adv Mater. 2023;35:2208781.