[HTML payload içeriği buraya]
31.7 C
Jakarta
Sunday, November 24, 2024

Current progress of non-linear topological construction polymers: synthesis, and gene supply | Journal of Nanobiotechnology


  • Kumar R, Santa Chalarca CF, Bockman MR, Van Bruggen C, Grimme CJ, et al. Polymeric supply of therapeutic nucleic acids. Chem Rev. 2021;121:11527–652.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim HJ, Kim A, Miyata Okay, Kataoka Okay. Current progress in improvement of siRNA supply automobiles for most cancers remedy. Adv Drug Ship Rev. 2016;104:61–77.

    Article 
    CAS 

    Google Scholar
     

  • Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, et al. Engineering siRNA therapeutics: challenges and techniques. J Nanobiotechnol. 2023;21:381–1.

    Article 

    Google Scholar
     

  • Liu S, Gao Y, Zhou D, Zeng M, Alshehri F, et al. Extremely branched poly(beta-amino ester) supply of minicircle DNA for transfection of neurodegenerative illness associated cells. Nat Commun. 2019;10:3307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou D, Cutlar L, Gao Y, Wang W, O’Keeffe-Ahern J, et al. The transition from linear to extremely branched poly(beta-amino ester)s: branching issues for gene supply. Sci Adv. 2016;2:e1600102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel AK, Kaczmarek JC, Bose S, Kauffman KJ, Mir F, et al. Inhaled nanoformulated mRNA polyplexes for protein manufacturing in lung epithelium. Adv Mater. 2019;31:e1805116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng GX, Liu J, Liu RR, Mao D, Tomczak N, et al. Ultrasmall conjugated polymer nanoparticles with excessive specificity for focused most cancers cell imaging. Adv Sci. 2017;4:1600407.

    Article 

    Google Scholar
     

  • Li C, Tzeng SY, Tellier LE, Inexperienced JJ. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer movies for gene supply. Acs Appl Mater Inter. 2013;5:5947–53.

    Article 
    CAS 

    Google Scholar
     

  • Tzeng SY, Guerrero-Cazares H, Martinez EE, Sunshine JC, Quinones-Hinojosa A, et al. Non-viral gene supply nanoparticles primarily based on poly(beta-amino esters) for remedy of glioblastoma. Biomaterials. 2011;32:5402–10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang C, Huang X, Solar L, Li Q, Li Z, et al. Cyclic poly(beta-amino ester)s with enhanced gene transfection exercise synthesized by means of intra-molecular cyclization. Chem Commun. 2022;58:2136–9.

    Article 
    CAS 

    Google Scholar
     

  • Anderson DG, Akinc A, Hossain N, Langer R. Construction/property research of polymeric gene supply utilizing a library of poly(beta-amino esters). Mol Ther. 2005;11:426–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Shi J, Ma B, Zhou Y-N, Yong H et al. Functionalization of polymers for intracellular protein supply. Prog Polym Sci. 2023;146.

  • Cortez MA, Godbey WT, Fang Y, Payne ME, Cafferty BJ, et al. The synthesis of cyclic poly(ethylene imine) and precise linear analogues: an analysis of gene supply evaluating polymer architectures. J Am Chem Soc. 2015;137:6541–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene supply to human T cells. J Management Launch. 2018;282:140–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, et al. Star Polym Chem Rev. 2016;116:6743–836.

    CAS 

    Google Scholar
     

  • Wu W, Wang W, Li J. Star polymers: advances in biomedical purposes. Prog Polym Sci. 2015;46:55–85.

    Article 
    CAS 

    Google Scholar
     

  • Barratt CM, Haraniya TK, Iwamasa SJ, Yun JJ, Desyatkin VG, et al. Synthesis and conformational research of hyperbranched-core star polymers with poly(γ-benzyl-l-glutamate) arms. Eur Polym J. 2023;186:111859.

    Article 
    CAS 

    Google Scholar
     

  • Shanmugam S, Boyer C. Polymer synthesis natural photocatalysts for cleaner polymer synthesis. Sci. 2016;352:1053–4.

    Article 
    CAS 

    Google Scholar
     

  • Gao Y, Zhou D, Lyu J, Sigen A, Xu Q, et al. Complicated polymer architectures by means of free-radical polymerization of multivinyl monomers. Nat Rev Chem. 2020;4:194–212.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao TY, Zheng Y, Poly J, Wang WX. Managed multi-vinyl monomer homopolymerization by means of vinyl oligomer mixture as a common method to hyperbranched architectures. Nat Commun. 2013;4:1873.

    Article 
    PubMed 

    Google Scholar
     

  • Han J, Li S, Tang A, Gao C. Water-soluble and clickable segmented hyperbranched polymers for multifunctionalization and novel structure building. Macromolecules. 2012;45:4966–77.

    Article 
    CAS 

    Google Scholar
     

  • Chen C, Weil T, Cyclic Polymers. Synthesis, traits, and rising purposes. Nanoscale Horiz. 2022;7:1121–35.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, et al. Concentrating on T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 leads to antitumor immunity and sturdy response in pancreatic most cancers. Nat Most cancers. 2023;4:62–80.

    PubMed 
    CAS 

    Google Scholar
     

  • Solar H, Kabb CP, Sims MB, Sumerlin BS. Structure-transformable polymers: reshaping the way forward for stimuli-responsive polymers. Prog Polym Sci. 2019;89:61–75.

    Article 
    CAS 

    Google Scholar
     

  • Kly S, Andrew LJ, Moloney EG, Huang Y, Wulff JE, et al. Hierarchical self-assembly path to polyplex-in-hydrophobic-core micelles for gene supply. Chem Mater. 2021;33:6860–75.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Ho W, Bai X, Li F, Chen Y-j, et al. Nanoparticle depots for managed and sustained gene supply. J Management Launch. 2020;322:622–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao T, Zhang H, Newland B, Aied A, Zhou D, et al. Significance of branching for transfection: synthesis of extremely branched degradable practical poly(dimethylaminoethyl methacrylate) by Vinyl Oligomer Mixture. Angew Chem Int Ed. 2014;53:6095–100.

    Article 
    CAS 

    Google Scholar
     

  • Xiu Okay, Saunders L, Wen L, Ruan J, Dong R, et al. Supply of Crispr/Cas9 plasmid DNA by hyperbranched polymeric nanoparticles permits environment friendly gene modifying. Cells. 2023;12:156.

    Article 
    CAS 

    Google Scholar
     

  • Zeng M, Alshehri F, Zhou D, Lara-Saez I, Wang X, et al. Environment friendly and strong extremely branched poly(beta-amino ester)/minicircle col7a1 polymeric nanoparticles for gene supply to recessive dystrophic epidermolysis bullosa keratinocytes. Acs Appl Mater Inter. 2019;11:30661–72.

    Article 
    CAS 

    Google Scholar
     

  • Zeng M, Xu Q, Zhou D, Sigen A, Alshehri F, et al. Extremely branched poly(beta-amino ester)s for gene supply in hereditary pores and skin illnesses. Adv Drug Ship Rev. 2021;176:113842.

    Article 
    CAS 

    Google Scholar
     

  • Hu J, Hu Okay, Cheng Y. Tailoring the dendrimer core for environment friendly gene supply. Acta Biomater. 2016;35:1–11.

    Article 
    PubMed 

    Google Scholar
     

  • Nair A, Javius-Jones Okay, Bugno J, Poellmann MJ, Mamidi N, et al. Hybrid nanoparticle system integrating tumor-derived exosomes and poly(amidoamine) dendrimers: implications for an efficient gene supply platform. Chem Mater. 2023;35:3138–50.

    Article 
    CAS 

    Google Scholar
     

  • Joubert F, Munson MJ, Sabirsh A, England RM, Hemmerling M, et al. Exact and systematic finish group chemistry modifications on pamam and poly(L-lysine) dendrimers to enhance cytosolic supply of mRNA. J Management Launch. 2023;356:580–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Golba B, Benetti EM, De Geest BG. Biomaterials Appl Cycl Polym Biomaterials. 2021;267:120468.

    CAS 

    Google Scholar
     

  • Lin S, Zhao X. Fracture of polymer networks with numerous topological defects. Phys Rev E. 2020;102:052503.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakagawa S, Yoshie N. Star polymer networks: a toolbox for cross-linked polymers with managed construction. Polym Chem. 2022;13:2074–107.

    Article 
    CAS 

    Google Scholar
     

  • Matsumoto M, Terashima T, Matsumoto Okay, Takenaka M, Sawamoto M. Compartmentalization applied sciences through self-assembly and cross linking of amphiphilic random block copolymers in water. J Am Chem Soc. 2017;139:7164–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huo H, Liu J, Kannan S, Chen L, Zhao Y, et al. Multicompartment nanoparticles bearing hydrophilic/hydrophobic subdomains by self-assembly of star polymers in aqueous resolution. Macromolecules. 2021;54:35–43.

    Article 
    CAS 

    Google Scholar
     

  • Stefanovic S, McCormick Okay, Fattah S, Brannigan R, Cryan S-A, et al. Star-shaped poly(L-lysine) with polyester bis-MPA dendritic core as potential degradable nano vectors for gene supply. Polym Chem. 2023;14:3151–9.

    Article 
    CAS 

    Google Scholar
     

  • Nian S, Huang B, Freychet G, Zhernenkov M, Cai L-H. Surprising folding of bottlebrush polymers in melts. Macromolecules. 2023;56:2551–9.

    Article 
    CAS 

    Google Scholar
     

  • Rocha MS, Storm IM, Bazoni RF, Ramos EB, Hernandez-Garcia A, et al. Pressure and scale dependence of the elasticity of self-assembled DNA bottle brushes. Macromolecules. 2018;51:1248–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Martinez MR, Dadashi-Silab S, Lorandi F, Zhao Y, Matyjaszewski Okay. Depolymerization of P(PDMS11MA) bottlebrushes through atom switch radical polymerization with activator regeneration. Macromolecules. 2021;54:5526–38.

    Article 
    CAS 

    Google Scholar
     

  • Xie GJ, Martinez MR, Olszewski M, Sheiko SS, Matyjaszewski Okay. Molecular bottlebrushes as novel supplies. Biomacromolecules. 2019;20:27–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Blum AP, Nelles DA, Hidalgo FJ, Touve MA, Sim DS, et al. Peptide brush polymers for environment friendly supply of a gene modifying protein to stem cells. Angew Chem Int Ed. 2019;58:15646–9.

    Article 
    CAS 

    Google Scholar
     

  • Yin L, Liu L, Zhang N. Brush-like polymers: design, synthesis and purposes. Chem Commun. 2021;57:10484–99.

    Article 
    CAS 

    Google Scholar
     

  • Feng C, Huang X. Polymer brushes: environment friendly synthesis and purposes. Acc Chem Res. 2018;51:2314–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li D, Xu L, Wang J, Gautrot JE. Responsive polymer brush design and rising purposes for nanotheranostics. Adv Well being Mater. 2021;10:e2000953.

    Article 

    Google Scholar
     

  • Wang R, Wei Q, Sheng W, Yu B, Zhou F, et al. Driving polymer brushes from synthesis to functioning. Angew Chem Int Ed. 2023;62:e202219312.

    Article 
    CAS 

    Google Scholar
     

  • Xie G, Martinez MR, Olszewski M, Sheiko SS, Matyjaszewski Okay. Molecular bottlebrushes as novel supplies. Biomacromolecules. 2019;20:27–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Burdynska J, Daniel W, Li Y, Robertson B, Sheiko SS, et al. Molecular bottlebrushes with bimodal size distribution of aspect chains. Macromolecules. 2015;48:4813–22.

    Article 
    CAS 

    Google Scholar
     

  • Adibnia V, Olszewski M, De Crescenzo G, Matyjaszewski Okay, Banquy X. Superlubricity of zwitterionic bottlebrush polymers within the presence of multivalent ions. J Am Chem Soc. 2020;142:14843–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nese A, Lebedeva NV, Sherwood G, Averick S, Li Y, et al. pH-responsive fluorescent molecular bottlebrushes ready by atom switch radical polymerization. Macromolecules. 2011;44:5905–10.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Nese A, Lebedeva NV, Davis T, Matyjaszewski Okay, et al. Molecular tensile machines: intrinsic acceleration of disulfide discount by dithiothreitol. J Am Chem Soc. 2011;133:17479–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Y, Niu Z, Burdynska J, Nese A, Zhou Y, et al. Sonication-induced scission of molecular bottlebrushes: implications of the bushy structure. Polymer. 2016;84:178–84.

    Article 
    CAS 

    Google Scholar
     

  • Xie G, Martinez MR, Daniel WFM, Keith AN, Ribelli TG, et al. Advantages of catalyzed radical termination: high-yield synthesis of polyacrylate molecular bottlebrushes with out gelation. Macromolecules. 2018;51:6218–25.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Solar Z, Li H, Dai Y, Hu Z, et al. Molecular bottlebrushes that includes brush-on-brush structure. Acs Macro Lett. 2019;8:749–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Y, Zhou H, Solar Z, Li H, Huang H, et al. Shell of amphiphilic molecular bottlebrush issues as unimolecular micelle. Polymer. 2018;149:316–24.

    Article 
    CAS 

    Google Scholar
     

  • Lu Y-C, Chou L-C, Huang C-F. Iron-catalysed atom switch radical polyaddition for the synthesis and modification of novel aliphatic polyesters displaying decrease vital resolution temperature and ph-dependent launch behaviors. Polym Chem. 2019;10:3912–21.

    Article 
    CAS 

    Google Scholar
     

  • Lai H, Chen X, Lu Q, Bian Z, Tao Y, et al. A brand new technique to synthesize bottlebrushes with a helical polyglutamate spine through N-carboxyanhydride polymerization and RAFT. Chem Commun. 2014;50:14183–6.

    Article 
    CAS 

    Google Scholar
     

  • Beyer VP, Cattoz B, Sturdy A, Schwarz A, Becer CR. Brush copolymers from 2-oxazoline and acrylic monomers through an inimer method. Macromolecules. 2020;53:2950–8.

    Article 
    CAS 

    Google Scholar
     

  • Su Y-X, Xu L, Xu X-H, Hou X-H, Liu N, et al. Managed synthesis of densely grafted bottlebrushes that bear helical polyisocyanide aspect chains on polyisocyanide backbones and exhibit tremendously elevated viscosity. Macromolecules. 2020;53:3224–33.

    Article 
    CAS 

    Google Scholar
     

  • Polymeropoulos G, Zapsas G, Ntetsikas Okay, Bilalis P, Gnanou Y, et al. fiftieth anniversary perspective: polymers with advanced architectures. Macromolecules. 2017;50:1253–90.

    Article 
    CAS 

    Google Scholar
     

  • Ding H, Park S, Zhong M, Pan X, Pietrasik J, et al. Facile arm-first synthesis of star block copolymers through ARGET ATRP with ppm quantities of catalyst. Macromolecules. 2016;49:6752–60.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Bilalis P, Zhang H, Gnanou Y, Hadjichristidis N. Core cross-linked multiarm star polymers with aggregation-induced emission and temperature responsive fluorescence traits. Macromolecules. 2017;50:4217–26.

    Article 
    CAS 

    Google Scholar
     

  • Pilkington EH, Lai M, Ge X, Stanley WJ, Wang B, et al. Star polymers cut back islet amyloid polypeptide toxicity through accelerated amyloid aggregation. Biomacromolecules. 2017;18:4249–60.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yoshizaki T, Kanazawa A, Kanaoka S, Aoshima S. Quantitative and ultrafast synthesis of well-defined star-shaped poly(p-methoxystyrene) through one-pot residing cationic polymerization. Macromolecules. 2016;49:71–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang P, Zhang Z, Jiang X, Rui L, Gao Y, et al. Unimolecular micelles from poss-based star-shaped block copolymers for photodynamic remedy. Polymer. 2017;118:268–79.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y-Y, Hu H, Wang X, Yang F, Shen H, et al. Acid-labile poly(glycidyl methacrylate)-based star gene vectors. Acs Appl Mater Inter. 2015;7:12238–48.

    Article 
    CAS 

    Google Scholar
     

  • Huang X, Zhou D, Zeng M, Alshehri F, Li X, et al. Star poly(beta-amino esters) obtained from the mix of linear poly(beta-amino esters) and polyethylenimine. Acs Macro Lett. 2017;6:575–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lam SJ, Wong EHH, O’Brien-Simpson NM, Pantarat N, Blencowe A, et al. Bionano interplay research on antimicrobial star-shaped peptide polymer nanoparticles. Acs Appl Mater Inter. 2016;8:33446–56.

    Article 
    CAS 

    Google Scholar
     

  • Byrne M, Victory D, Hibbitts A, Lanigan M, Heise A, et al. Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene supply vector. Biomater Sci. 2013;1:1223–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang X, Zhou D, Gao AS, Wang Y. Star polymers from single-chain cyclized/knotted nanoparticles as a core. Macromol Chem Phys. 2018;219:1700473.

    Article 

    Google Scholar
     

  • Zhang J, Shen H, Tune W, Wang G. Synthesis and characterization of novel copolymers with completely different topological buildings and tempo radical distributions. Macromolecules. 2017;50:2683–95.

    Article 
    CAS 

    Google Scholar
     

  • Cook dinner AB, Peltier R, Zhang J, Gurnani P, Tanaka J, et al. Hyperbranched poly(ethylenimine-co-oxazoline) by thiol- yne chemistry for non-viral gene supply: investigating the function of polymer structure. Polym Chem. 2019;10:1202–12.

    Article 
    CAS 

    Google Scholar
     

  • Che D, Wang C, Li Z, Wang Okay, Solar S, et al. Environment friendly gene transfection of suspension cells by extremely branched poly(beta-amino ester). Chin Chem Lett. 2023;34:108066.

    Article 
    CAS 

    Google Scholar
     

  • Cutlar L, Zhou D, Gao Y, Zhao T, Greiser U, et al. Extremely branched poly(beta-amino esters): synthesis and utility in gene supply. Biomacromolecules. 2015;16:2609–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tian H, Xiong W, Wei J, Wang Y, Chen X, et al. Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid phase PBLG. Biomaterials. 2007;28:2899–907.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang R, Zhou L, Zhou Y, Li G, Zhu X, et al. Synthesis and gene supply of poly(amido amine)s with completely different branched structure. Biomacromolecules. 2010;11:489–95.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng M, Zhou D, Alshehri F, Lara-Saez I, Lyu Y, et al. Manipulation of transgene expression in fibroblast cells by a multifunctional linear-branched hybrid poly(beta-amino ester) synthesized by means of an oligomer mixture method. Nano Lett. 2019;19:381–91.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, et al. Coupling of cell-binding ligands to polyethylenimine for focused gene supply. Gene Ther. 1997;4:409–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen B, Liu M, Zhang L, Huang J, Yao J, et al. Polyethylenimine-functionalized graphene oxide as an environment friendly gene supply vector. J Mater Chem. 2011;21:7736–41.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Jiang Q, Bi B, Xu L, Liu J, et al. A bioreducible supramolecular nanoparticle gene supply system primarily based on cyclodextrin-conjugated polyaspartamide and adamantyl-terminated polyethylenimine. J Mater Chem B. 2018;6:797–808.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nam Okay, Jung S, Nam J-P, Kim SW. Poly(ethylenimine) conjugated bioreducible dendrimer for environment friendly gene supply. J Management Launch. 2015;220:447–55.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Martello F, Piest M, Engbersen JFJ, Ferruti P. Results of branched or linear structure of bioreducible poly(amido amine)s on their in vitro gene supply properties. J Management Launch. 2012;164:372–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, et al. Non-viral vectors for gene-based remedy. Nat Rev Genet. 2014;15:541–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo X, Huang L. Current advances in nonviral vectors for gene supply. Acc Chem Res. 2012;45:971–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hadianamrei R, Zhao X. Present state-of-the-art in peptide-based gene supply. J Management Launch. 2022;343:600–19.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan Y, Liu X-Y, Lu A, Wang X-Y, Jiang L-X, et al. Non-viral vectors for RNA supply. J Management Launch. 2022;342:241–79.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu SW, Ding T, Tang H, Guo H, Cui W, et al. Nanobiomaterial vectors for enhancing gene modifying and gene remedy. Mater In the present day. 2023;66:114–36.

    Article 

    Google Scholar
     

  • Lin L, Su Okay, Cheng Q, Liu S. Concentrating on supplies and techniques for RNA supply. Theranostics. 2023;13:4667–93.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang C, Pan C, Yong H, Wang F, Bo T, et al. Rising non-viral vectors for gene supply. J Nanobiotechnol. 2023;21:272.

    Article 

    Google Scholar
     

  • Paunovska Okay, Loughrey D, Dahlman JE. Drug supply programs for RNA therapeutics. Nat Rev Genet. 2022;23:265–80.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jones CH, Chen C-Okay, Ravikrishnan A, Rane S, Pfeifer BA. Overcoming nonviral gene supply boundaries: perspective and future. Mol Pharm. 2013;10:4082–98.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qin M, Du G, Solar X. Current advances within the noninvasive supply of mRNA. Acc Chem Res. 2021;54:4262–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang M, Xiong Q, Wang Y, Zhang Z, Shen W, et al. A well-defined coil-comb polycationic brush with star polymers as aspect chains for gene supply. Polym Chem. 2014;5:4670–8.

    Article 
    CAS 

    Google Scholar
     

  • Lu X, Fu H, Shih Okay-C, Jia F, Solar Y, et al. DNA-mediated step-growth polymerization of bottlebrush macromonomers. J Am Chem Soc. 2020;142:10297–301.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang D, Lin J, Jia F, Tan X, Wang Y, et al. Bottlebrush-architectured poly(ethylene glycol) as an environment friendly vector for RNA interference in vivo. Sci Adv. 2019;5:2.


    Google Scholar
     

  • Ahern JOK, Sigen A, Zhou D, Gao Y, Lyu J, et al. Brushlike cationic polymers with low cost density for gene supply. Biomacromolecules. 2018;19:1410–5.

    Article 

    Google Scholar
     

  • Nie J-J, Zhao W, Hu H, Yu B, Xu F-J. Controllable heparin-based comb copolymers and their self-assembled nanoparticles for gene supply. Acs Appl Mater Inter. 2016;8:8376–85.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Wei H, Tan J-KY, Peeler DJ, Maris DO, et al. Nano-sized sunflower polycations as efficient gene switch automobiles. Small. 2016;12:2750–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li J, Qian J, Xu Y, Yan S, Shen J, et al. A facile-synthesized star polycation constructed as a extremely environment friendly gene vector in pest administration. Acs Maintain Chem Eng. 2019;7:6316–22.

    Article 
    CAS 

    Google Scholar
     

  • Fus-Kujawa A, Sieron L, Dobrzynska E, Chajec L, Mendrek B, et al. Star polymers as non-viral carriers for apoptosis induction. Biomolecules. 2022;12:608.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cho HY, Averick SE, Paredes E, Wegner Okay, Averick A, et al. Star polymers with a cationic core ready by atrp for mobile nucleic acids supply. Biomacromolecules. 2013;14:1262–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li S, Omi M, Cartieri F, Konkolewicz D, Mao G, et al. Cationic hyperbranched polymers with biocompatible shells for siRNA supply. Biomacromolecules. 2018;19:3754–65.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang J, Liang H, Cheng D, Lu J. Polypeptide-poly(ethylene glycol) miktoarm star copolymers with a fluorescently labeled core: synthesis, supply and imaging of siRNA. Polym Chem. 2016;7:1792–802.

    Article 
    CAS 

    Google Scholar
     

  • Mendrek B, Sieron L, Zymelka-Miara I, Binkiewicz P, Libera M, et al. Nonviral plasmid DNA carriers primarily based on N,N’-Dimethylaminoethyl methacrylate and Di(ethylene glycol) methyl ether methacrylate star copolymers. Biomacromolecules. 2015;16:3275–85.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fus-Kujawa A, Teper P, Botor M, Klarzynska Okay, Sieron L, et al. Purposeful star polymers as reagents for environment friendly nucleic acids supply into HT-1080 cells. Int J Polym Mater Po. 2020;70:1–15.


    Google Scholar
     

  • Chen W, Hong Y, Zhang T, Kong D, Zhang M, et al. Star-shaped poly(2-aminoethyl methacrylate)s as non-viral gene carriers: exploring structure-function relationship. Colloids Surf B. 2019;181:721–7.

    Article 
    CAS 

    Google Scholar
     

  • Raup A, Stahlschmidt U, Jerome V, Synatschke CV, Mueller AHE, et al. Affect of polyplex formation on the efficiency of star-shaped polycationic transfection brokers for mammalian cells. Polymers. 2016;8:224.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou D, Gao Y, Ahern JOK, Sigen A, Xu Q, et al. Improvement of branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) with excessive gene transfection efficiency throughout numerous cell varieties. Acs Appl Mater Inter. 2016;8:34218–26.

    Article 
    CAS 

    Google Scholar
     

  • Lynn DM, Langer R. Degradable poly(beta-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc. 2000;122:10761–8.

    Article 
    CAS 

    Google Scholar
     

  • Huang J-Y, Gao Y, Cutlar L, O’Keeffe-Ahern J, Zhao T, et al. Tailoring extremely branched poly(beta-amino ester)s: an artificial platform for epidermal gene remedy. Chem Commun. 2015;51:8473–6.

    Article 
    CAS 

    Google Scholar
     

  • Zhou D, Gao Y, Aied A, Cutlar L, Igoucheva O, et al. Extremely branched poly(beta-amino ester)s for pores and skin gene remedy. J Management Launch. 2016;244:336–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao Y, Bo T, Wang C, Yao D, Pan C, et al. Superior path gene expression and most cancers cell apoptosis mediated by extremely branched-linear poly(beta-amino ester)s. J Nanobiotechnol. 2023;21:394.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Wang C-F, Lie M, Zhou D-Z, Huang W, et al. Results of branching technique on the gene transfection of extremely branched poly(beta-amino ester)s. Chin J Polym Sci. 2020;38:830–9.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Gao Y, Sigen A, Zhou D, Greiser U, et al. Biodegradable extremely branched poly(beta-amino ester)s for focused most cancers cell gene transfection. Acs Biomater Sci Eng. 2017;3:1283–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou D, Pierucci L, Gao Y, Ahern JOK, Huang X, et al. Thermo- and Ph-responsive, coacervate-forming hyperbranched poly(beta-amino ester)s for selective cell binding. Acs Appl Mater Inter. 2017;9:5793–802.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Solar Z, Zhou D, Guo T. Alkylated branched poly(beta-amino esters) show robust DNA encapsulation, excessive nanoparticle stability and strong gene transfection efficacy. J Mater Chem B. 2017;5:5307–10.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gu J, Chen X, Fang X, Sha X. Retro-inverso D-peptide-modified hyaluronic acid/bioreducible hyperbranched poly(amido amine)/pDNA core-shell ternary nanoparticles for the dual-targeted supply of brief hairpin RNA-encoding plasmids. Acta Biomater. 2017;57:156–69.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang Y, Ding X, Qi Y, Yu B, Xu F-J. Discount-responsive multifunctional hyperbranched polyaminoglycosides with wonderful antibacterial exercise, biocompatibility and gene transfection functionality. Biomaterials. 2016;106:134–43.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu T, Li J, Wu X, Zhang S, Lu Z, et al. Transferrin-targeting redox hyperbranched poly(amido amine)-functionalized graphene oxide for sensitized chemotherapy mixed with gene remedy to nasopharyngeal carcinoma. Drug Deliv. 2019;26:744–55.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Guo Z, Lin L, Chen J, Zhou X, Chan HF, et al. Poly(ethylene glycol)-poly-l-glutamate complexed with polyethyleneimine-polyglycine for extremely environment friendly gene supply in vitro and in vivo. Biomater Sci. 2018;6:3053–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bohr A, Tsapis N, Andreana I, Chamarat A, Foged C, et al. Anti-inflammatory impact of anti-TNF-alpha siRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung damage mannequin. Biomacromolecules. 2017;18:2379–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rewatkar PV, Sester DP, Parekh HS, Parat M-O. Specific in vitro plasmid transfection achieved with 16(+) uneven peptide dendrimers. Acs Biomater Sci Eng. 2016;2:438–45.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu S, Wen R, Wang H, Zha Y, Qiu L, et al. Chitosan-graft-poly(L-lysine) dendron-assisted facile self-assembly of au nanoclusters for enhanced X-ray laptop tomography imaging and exact mmp-9 plasmid shRNA supply. Chem Mater. 2019;31:3992–4007.

    Article 
    CAS 

    Google Scholar
     

  • Kim W, Ly NK, He Y, Li Y, Yuan Z, et al. Protein corona: buddy or foe? Co-opting serum proteins for nanoparticle supply. Adv Drug Deliv Rev. 2023;192:114635.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Newland B, Zheng Y, Jin Y, Abu-Rub M, Cao H, et al. Single cyclized molecule versus single branched molecule: a easy and environment friendly 3d knot polymer construction for nonviral gene supply. J Am Chem Soc. 2012;134:4782–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao Y, Bohmer VI, Zhou D, Zhao T, Wang W, et al. Primary-chain degradable single-chain cyclized polymers as gene supply vectors. J Management Launch. 2016;244:375–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wei H, Chu DSH, Zhao J, Pahang JA, Pun SH. Synthesis and analysis of cyclic cationic polymers for nucleic acid supply. Acs Macro Lett. 2013;2:1047–50.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles